咨询与建议

限定检索结果

文献类型

  • 54 篇 会议
  • 3 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 58 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 21 篇 工学
    • 11 篇 机械工程
    • 9 篇 仪器科学与技术
    • 8 篇 计算机科学与技术...
    • 8 篇 软件工程
    • 5 篇 控制科学与工程
    • 4 篇 光学工程
    • 3 篇 信息与通信工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 生物工程
  • 8 篇 理学
    • 4 篇 数学
    • 4 篇 物理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 生物学
    • 1 篇 系统科学
  • 4 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
    • 1 篇 工商管理
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 19 篇 computer vision
  • 13 篇 humans
  • 11 篇 object recogniti...
  • 10 篇 robots
  • 9 篇 cameras
  • 9 篇 laboratories
  • 9 篇 shape
  • 9 篇 robustness
  • 8 篇 grasping
  • 7 篇 image segmentati...
  • 7 篇 pattern recognit...
  • 7 篇 robot sensing sy...
  • 6 篇 computer science
  • 6 篇 support vector m...
  • 6 篇 machine vision
  • 6 篇 robot vision sys...
  • 5 篇 numerical analys...
  • 5 篇 histograms
  • 5 篇 layout
  • 4 篇 object detection

机构

  • 7 篇 computer vision ...
  • 3 篇 computer vision ...
  • 3 篇 computational vi...
  • 2 篇 computer vision ...
  • 2 篇 centre for auton...
  • 2 篇 computer vision ...
  • 2 篇 computer vision ...
  • 1 篇 department of co...
  • 1 篇 computational vi...
  • 1 篇 computational vi...
  • 1 篇 autonomous motio...
  • 1 篇 multimodal inter...
  • 1 篇 department of nu...
  • 1 篇 laboratory of ro...
  • 1 篇 humanoids and in...
  • 1 篇 computer vision ...
  • 1 篇 automation and c...
  • 1 篇 department of co...
  • 1 篇 institute for an...
  • 1 篇 laboratory of ro...

作者

  • 20 篇 danica kragic
  • 4 篇 omid aghazadeh
  • 4 篇 t. lindeberg
  • 4 篇 b. caputo
  • 4 篇 carl henrik ek
  • 4 篇 dan song
  • 4 篇 d. kragic
  • 3 篇 javier romero
  • 3 篇 stefan carlsson
  • 3 篇 kragic danica
  • 3 篇 kai huebner
  • 3 篇 marianna madry
  • 3 篇 josephine sulliv...
  • 3 篇 i. laptev
  • 3 篇 hedvig kjellströ...
  • 3 篇 renaud detry
  • 3 篇 jeannette bohg
  • 2 篇 tamim asfour
  • 2 篇 d. roobaert
  • 2 篇 tsotsos john

语言

  • 58 篇 英文
检索条件"机构=Computer Vision and Active Perception Laboratory"
58 条 记 录,以下是31-40 订阅
排序:
YES - YEt another object segmentation: Exploiting camera movement
YES - YEt another object segmentation: Exploiting camera mov...
收藏 引用
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Lazaros Nalpantidis Mårten Björkman Danica Kragic Computer Vision and Active Perception Laboratory Centre for Autonomous Systems School of Computer Science and Communication Royal Institute of Technology (KTH) Stockholm Sweden
We address the problem of object segmentation in image sequences where no a-priori knowledge of objects is assumed. We take advantage of robots' ability to move, gathering multiple images of the scene. Our approac... 详细信息
来源: 评论
ICE matching, a novel approach for localization problem
ICE matching, a novel approach for localization problem
收藏 引用
International Conference on Control, Automation and Systems ( ICCAS)
作者: Maziar A. Sharbafi Sanaz Taleghani Edriss Esmaeili Abolfazl T. Haghighat Omid Aghazadeh Department of Electrical and Computer Engineering Azad University of Qazvin Qazvin Iran Computer Vision and Active Perception(CVAP) laboratory KTH Stockholm Sweden
This paper presents a novel technique for scan matching. The method is based on the family of feature to feature matching approaches. Our innovative method named ICE matching leads to a fast and accurate solution to s... 详细信息
来源: 评论
Topology, Big Data and Optimization
Studies in Big Data
收藏 引用
Studies in Big Data 2016年 18卷 147-176页
作者: Vejdemo-Johansson, Mikael Skraba, Primoz Computer Vision and Active Perception Laboratory KTH Royal Institute of Technology Stockholm100 44 Sweden AI Laboratory Jozef Stefan Institute Jamova 39 Ljubljana Slovenia
The idea of using geometry in learning and inference has a long history going back to canonical ideas such as Fisher information, Discriminant analysis, and Principal component analysis. The related area of Topologica... 详细信息
来源: 评论
Layered HMM for Motion Intention Recognition
Layered HMM for Motion Intention Recognition
收藏 引用
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Daniel Aarno Danica Kragic School of Computer Science and Communication Centre for Autonomous Systems-Computational Vision and Active Perception Laboratory Royal Institute of Technology Sweden
Acquiring, representing and modeling human skills is one of the key research areas in teleoperation, programming-by-demonstration and human-machine collaborative settings. One of the common approaches is to divide the... 详细信息
来源: 评论
Task-based grasp adaptation on a humanoid robot
Task-based grasp adaptation on a humanoid robot
收藏 引用
10th IFAC Symposium on Robot Control, SYROCO 2012
作者: Bohg, Jeannette Welke, Kai León, Beatriz Do, Martin Song, Dan Wohlkinger, Walter Madry, Marianna Aldóma, Aitor Przybylski, Markus Asfour, Tamim Martí, Higinio Kragic, Danica Morales, Antonio Vincze, Markus Humanoids and Intelligence Systems Lab. Institute for Anthropomatics KIT Germany Autonomous Motion Lab. MPI for Intelligent Systems Germany Robotic Intelligence Laboratory Department of Computer Science and Engineering UJI Spain Computer Vision and Active Perception Lab. KTH Sweden Automation and Control Institute TUW Austria
In this paper, we present an approach towards autonomous grasping of objects according to their category and a given task. Recent advances in the field of object segmentation and categorization as well as task-based g... 详细信息
来源: 评论
Modeling Image Context Using Object Centered Grid
Modeling Image Context Using Object Centered Grid
收藏 引用
Proceedings of the Digital Image Computing: Technqiues and Applications (DICTA)
作者: Sobhan Naderi Parizi Ivan Laptev Alireza Tavakoli Targhi Computer Vision and Active Perception Laboratory Royal Institute of Technology (KTH) Stockholm Sweden INRIA / École Normale Superieure Paris France
Context plays a valuable role in any image understanding task confirmed by numerous studies which have shown the importance of contextual information in computer vision tasks, like object detection, scene classificati... 详细信息
来源: 评论
Recognizing human actions: a local SVM approach
Recognizing human actions: a local SVM approach
收藏 引用
International Conference on Pattern Recognition
作者: C. Schuldt I. Laptev B. Caputo Computational Vision and Active Perception Laboratory (CVAP) Department of Numerical Analysis and Computer Science KTH Royal Institute of Technology Stockholm Sweden
Local space-time features capture local events in video and can be adapted to the size, the frequency and the velocity of moving patterns. In this paper, we demonstrate how such features can be used for recognizing co... 详细信息
来源: 评论
Velocity adaptation of space-time interest points
Velocity adaptation of space-time interest points
收藏 引用
International Conference on Pattern Recognition
作者: I. Laptev T. Lindeberg Computational Vision and Active Perception Laboratory (CVAP) Department of Numerical Analysis and Computer Science KTH Royal Institute of Technology Stockholm Sweden
The notion of local features in space-time has recently been proposed to capture and describe local events in video. When computing space-time descriptors, however, the result may strongly depend on the relative motio... 详细信息
来源: 评论
View-based 3D object recognition with support vector machines
View-based 3D object recognition with support vector machine...
收藏 引用
IEEE Workshop on Neural Networks for Signal Processing
作者: D. Roobaert M.M. Van Hulle Computer Vision and Active Perception Laboratory Royal Institute of Technology Stockholm Sweden Laboratory for Neuro-and Psychophysiology K.U. Leuven Leuven Belgium
Support vector machines have demonstrated excellent results in pattern recognition tasks and 3D object recognition. We confirm some of the results in 3D object recognition and compare it to other object recognition sy... 详细信息
来源: 评论
Galilean-diagonalized spatio-temporal interest operators
Galilean-diagonalized spatio-temporal interest operators
收藏 引用
International Conference on Pattern Recognition
作者: T. Lindeberg A. Akbarzadeh I. Laptev Computational Vision and Active Perception Laboratory (CVAP) Department of Numerical Analysis and Computer Science KTH Royal Institute of Technology Stockholm Sweden
This paper presents a set of image operators for detecting regions in space-time where interesting events occur. To define such regions of interest, we compute a spatio-temporal second-moment matrix from a spatio-temp... 详细信息
来源: 评论