咨询与建议

限定检索结果

文献类型

  • 99 篇 期刊文献
  • 79 篇 会议

馆藏范围

  • 178 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 94 篇 工学
    • 64 篇 计算机科学与技术...
    • 60 篇 软件工程
    • 27 篇 光学工程
    • 22 篇 生物工程
    • 21 篇 生物医学工程(可授...
    • 19 篇 信息与通信工程
    • 13 篇 电气工程
    • 10 篇 控制科学与工程
    • 5 篇 电子科学与技术(可...
    • 4 篇 机械工程
    • 4 篇 仪器科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 土木工程
    • 2 篇 材料科学与工程(可...
  • 67 篇 理学
    • 28 篇 物理学
    • 26 篇 生物学
    • 23 篇 数学
    • 8 篇 统计学(可授理学、...
    • 4 篇 化学
    • 2 篇 系统科学
  • 21 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 15 篇 医学
    • 14 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
    • 3 篇 公共卫生与预防医...
    • 2 篇 特种医学
  • 3 篇 农学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学

主题

  • 25 篇 robot vision sys...
  • 25 篇 artificial intel...
  • 22 篇 intelligent robo...
  • 19 篇 computer vision
  • 15 篇 laboratories
  • 12 篇 robustness
  • 12 篇 robotics and aut...
  • 10 篇 cameras
  • 10 篇 robot sensing sy...
  • 10 篇 shape
  • 9 篇 manipulators
  • 6 篇 computer science
  • 6 篇 deformable model...
  • 6 篇 image edge detec...
  • 5 篇 vehicle detectio...
  • 5 篇 visualization
  • 5 篇 semantics
  • 5 篇 automatic contro...
  • 5 篇 humans
  • 5 篇 image reconstruc...

机构

  • 19 篇 artificial intel...
  • 7 篇 computer vision ...
  • 6 篇 heidelberg
  • 5 篇 university of sc...
  • 5 篇 college of compu...
  • 5 篇 nanjing universi...
  • 5 篇 artificial intel...
  • 4 篇 inception instit...
  • 4 篇 digital research...
  • 4 篇 centre for medic...
  • 4 篇 heidelberg divis...
  • 4 篇 universitat pomp...
  • 4 篇 school of artifi...
  • 4 篇 shanghai ai labo...
  • 4 篇 department of pa...
  • 4 篇 ihu strasbourg s...
  • 4 篇 institute of aut...
  • 4 篇 faculty of mathe...
  • 4 篇 university of ma...
  • 4 篇 university of mi...

作者

  • 22 篇 n.p. papanikolop...
  • 13 篇 c.e. smith
  • 7 篇 timofte radu
  • 6 篇 bakas spyridon
  • 6 篇 reinke annika
  • 6 篇 menze bjoern
  • 6 篇 y.v. venkatesh
  • 6 篇 r. singh
  • 5 篇 galdran adrian
  • 5 篇 fornés alicia
  • 5 篇 o. masoud
  • 5 篇 khan fahad shahb...
  • 5 篇 isensee fabian
  • 4 篇 s.a. brandt
  • 4 篇 rajpoot nasir
  • 4 篇 kozubek michal
  • 4 篇 godau patrick
  • 4 篇 zhang zhao
  • 4 篇 van ginneken bra...
  • 4 篇 summers ronald m...

语言

  • 172 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Artificial Intelligence Laboratory Department of Computer Architecture"
178 条 记 录,以下是31-40 订阅
排序:
TransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic Token Mixer for Visual Recognition
arXiv
收藏 引用
arXiv 2023年
作者: Lou, Meng Zhou, Hong-Yu Yang, Sibei Yu, Yizhou The Artificial Intelligence Laboratory Deepwise Healthcare Beijing China The Department of Computer Science The University of Hong Kong Hong Kong The Shanghai Engineering Research Center of Intelligent Vision and Imaging ShanghaiTech University Shanghai China
Recent studies have integrated convolution into transformers to introduce inductive bias and improve generalization performance. However, the static nature of conventional convolution prevents it from dynamically adap... 详细信息
来源: 评论
IFViT: Interpretable Fixed-Length Representation for Fingerprint Matching via vision Transformer
arXiv
收藏 引用
arXiv 2024年
作者: Qiu, Yuhang Chen, Honghui Dong, Xingbo Lin, Zheng Liao, Iman Yi Tistarelli, Massimo Jin, Zhe The Anhui Provincial Key Laboratory of Artificial Intelligence School of Artificial Intelligence Anhui University Hefei230093 China The Faculty of Engineering Monash University Wellington Road ClaytonVIC3800 Australia The Department of Physics and Information Engineering Fuzhou University Fuzhou350108 China The Department of Electrical and Electronic Engineering University of Hong Kong Pok Fu Lam Hong Kong The School of Computer Science University of Nottingham Malaysia Campus Semenyih43500 Malaysia The Computer Vision Laboratory University of Sassari Sassari07100 Italy
Determining dense feature points on fingerprints used in constructing deep fixed-length representations for accurate matching, particularly at the pixel level, is of significant interest. To explore the interpretabili... 详细信息
来源: 评论
Online Self-distillation and Self-modeling for 3D Brain Tumor Segmentation
收藏 引用
IEEE Journal of Biomedical and Health Informatics 2025年 PP卷 PP页
作者: Pang, Yan Li, Yunhao Huang, Teng Liang, Jiaming Wang, Zhen Dong, Changyu Kuang, Dongyang Hu, Ying Chen, Hao Lei, Tim Wang, Qiong The Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China The School of Artificial Intelligence Guangzhou University China The Zhejiang Lab Hangzhou China Sun Yat-sen University China The Department of Computer Science and Engineering The Department of Chemical and Biological Engineering Hong Kong University of Science and Technology China The Department of Electrical Engineering University of Colorado Denver United States
In the specialized domain of brain tumor segmentation, supervised segmentation approaches are hindered by the limited availability of high-quality labeled data, a condition arising from data privacy concerns, signific... 详细信息
来源: 评论
Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report  17th
Efficient Single-Image Depth Estimation on Mobile Devices, ...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Ignatov, Andrey Malivenko, Grigory Timofte, Radu Treszczotko, Lukasz Chang, Xin Ksiazek, Piotr Lopuszynski, Michal Pioro, Maciej Rudnicki, Rafal Smyl, Maciej Ma, Yujie Li, Zhenyu Chen, Zehui Xu, Jialei Liu, Xianming Jiang, Junjun Shi, XueChao Xu, Difan Li, Yanan Wang, Xiaotao Lei, Lei Zhang, Ziyu Wang, Yicheng Huang, Zilong Luo, Guozhong Yu, Gang Fu, Bin Li, Jiaqi Wang, Yiran Huang, Zihao Cao, Zhiguo Conde, Marcos V. Sapozhnikov, Denis Lee, Byeong Hyun Park, Dongwon Hong, Seongmin Lee, Joonhee Lee, Seunggyu Chun, Se Young Computer Vision Lab ETH Zürich Zürich Switzerland AI Witchlabs Zollikerberg Switzerland University of Wuerzburg Wuerzburg Germany TCL Research Europe Warsaw Poland Harbin Institute of Technology Harbin China Xiaomi Inc. Beijing China Tencent GY-Lab Shenzhen China National Key Laboratory of Science and Technology on Multi-Spectral Information Processing School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Department of Electrical and Computer Engineering Seoul National University Seoul Korea Republic of
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficien... 详细信息
来源: 评论
Self-Ensembling Depth Completion Via Density-Aware Consistency
SSRN
收藏 引用
SSRN 2023年
作者: Zhang, Xuanmeng Zheng, Zhedong Jiang, Minyue Ye, Xiaoqing The ReLER Laboratory Australian Artificial Intelligence Institute University of Technology SydneyNSW2007 Australia The Sea-NExT Joint Lab The Department of Computer Science School of Computing National University of Singapore Singapore117417 Singapore The Department of Computer Vision Technology Baidu Inc. Beijing100085 China
Depth completion can predict a dense depth map by taking a sparse depth map and the aligned RGB image as input, but the acquisition of ground truth annotations is labor-intensive and non-scalable. Therefore, we resort... 详细信息
来源: 评论
Nightwatch with YOLOv8: Real-Time Vehicle Detection and Speed Analysis for Safer Roads
Nightwatch with YOLOv8: Real-Time Vehicle Detection and Spee...
收藏 引用
Ubiquitous Networking (UNet), International Conference on
作者: Fouad Agramelal Mohamed Sadik Soumia Mouloudi Youssef Moubarak Saad Abouzahir NEST Research Group ENSEM Hassan II University of Casablanca Casablanca Morocco Laboratory of Information Technologies ENSA University of Chouaib Doukkali El Jadida Morocco Department of Computer Vision Mohamed bin Zayed University of Artificial Intelligence Abu Dhabi United Arab Emirates
The heavy electric energy consumption of street-lights has prompted the scientific community to develop various control methods. Among these, zoning control, where light follows road users, has emerged as a promising ... 详细信息
来源: 评论
ST-KeyS: Self-Supervised Transformer for Keyword Spotting in Historical Handwritten Documents
arXiv
收藏 引用
arXiv 2023年
作者: Jemni, Sana Khamekhem Ammar, Sourour Souibgui, Mohamed Ali Kessentini, Yousri Cheddad, Abbas Digital Research Center of Sfax B.P. 275 Sakiet Ezzit Sfax3021 Tunisia Laboratory of Signals systems Artificial Intelligence and networks Sfax Tunisia Multimedia Information systems and Advanced Computing Laboratory Tunisia Computer Vision Center Computer Science Department Universitat Autònoma de Barcelona Spain Department of Computer Science Blekinge Institute of Technology Karlskrona Sweden
Keyword spotting (KWS) in historical documents is an important tool for the initial exploration of digitized collections. Nowadays, the most efficient KWS methods are relying on machine learning techniques that requir... 详细信息
来源: 评论
Beyond Instruction Following: Evaluating Inferential Rule Following of Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Wangtao Zhang, Chenxiang Zhang, Xueyou Yu, Xuanqing Huang, Ziyang Xu, Haotian Chen, Pei He, Shizhu Zhao, Jun Liu, Kang The Laboratory of Cognition and Decision Intelligence for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China CAS Engineering Laboratory for Intelligent Industrial Vision Institute of Automation Chinese Academy of Sciences Beijing China Department of Computer Science and Engineering Texas A&M University United States Shanghai Artificial Intelligence Laboratory China Xiaohongshu Inc China AI Lab AIGility Cloud Innovation Beijing China
Although Large Language Models (LLMs) have demonstrated strong instruction-following ability, they are further supposed to be controlled and guided by inferential rules in real-world scenarios to be safe, accurate, an... 详细信息
来源: 评论
St-Keys: Self-Supervised Transformer for Keyword Spotting in Historical Handwritten Documents
SSRN
收藏 引用
SSRN 2023年
作者: Jemni, Sana Khamekhem Ammar, Sourour Souibgui, Mohamed Ali Kessentini, Yousri Cheddad, Abbas Digital Research Center of Sfax B.P. 275 Sakiet Ezzit Sfax3021 Tunisia SM@RTS: Laboratory of Signals systeMs aRtificial Intelligence and neTworkS MIR@CL: Multimedia InfoRmation systems and Advanced Computing Laboratory Computer Vision Center Computer Science Department Universitat Aut`onoma de Barcelona Spain Department of Computer Science Blekinge Institute of Technology Karlskrona Sweden
Keyword spotting (KWS) in historical documents is an important tool for the initial exploration of digitized collections. Nowadays, the most efficient KWS methods are relying on machine learning techniques that requir... 详细信息
来源: 评论
CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Xu Hou, XianXu Lai, Zhihui Zhou, Jie Zhang, Ya-Nan Pedrycz, Witold Shen, Linlin The Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China School of AI and Advanced Computing Xi’an Jiaotong-Liverpool University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Shenzhen518060 China The Department of Electrical & Computer Engineering University of Alberta University of Alberta Canada
Low-light image enhancement (LLIE) aims to improve low-illumination images. However, existing methods face two challenges: (1) uncertainty in restoration from diverse brightness degradations;(2) loss of texture and co... 详细信息
来源: 评论