咨询与建议

限定检索结果

文献类型

  • 82 篇 会议
  • 71 篇 期刊文献

馆藏范围

  • 153 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 121 篇 工学
    • 89 篇 计算机科学与技术...
    • 87 篇 软件工程
    • 37 篇 光学工程
    • 29 篇 生物医学工程(可授...
    • 24 篇 生物工程
    • 17 篇 机械工程
    • 15 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 12 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 8 篇 交通运输工程
    • 5 篇 化学工程与技术
    • 3 篇 仪器科学与技术
    • 3 篇 建筑学
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 轻工技术与工程
  • 60 篇 理学
    • 26 篇 数学
    • 25 篇 生物学
    • 21 篇 物理学
    • 5 篇 化学
    • 5 篇 系统科学
    • 4 篇 统计学(可授理学、...
    • 2 篇 大气科学
  • 23 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 18 篇 医学
    • 16 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 13 篇 computer graphic...
  • 12 篇 cameras
  • 10 篇 computer vision
  • 9 篇 object detection
  • 7 篇 visualization
  • 7 篇 robustness
  • 6 篇 generative adver...
  • 6 篇 laboratories
  • 6 篇 augmented realit...
  • 5 篇 three-dimensiona...
  • 5 篇 virtual reality
  • 4 篇 target tracking
  • 4 篇 feature extracti...
  • 4 篇 detectors
  • 4 篇 classification (...
  • 4 篇 solid modeling
  • 4 篇 training
  • 3 篇 deep learning
  • 3 篇 magnetic resonan...
  • 3 篇 lighting

机构

  • 18 篇 institute for co...
  • 16 篇 computer algorit...
  • 13 篇 institute of com...
  • 10 篇 partner site ess...
  • 9 篇 key laboratory o...
  • 9 篇 christian dopple...
  • 8 篇 university medic...
  • 8 篇 christian dopple...
  • 7 篇 christian dopple...
  • 7 篇 institute for co...
  • 6 篇 university medic...
  • 6 篇 institute of com...
  • 6 篇 computer vision ...
  • 5 篇 institute of com...
  • 4 篇 institute for co...
  • 4 篇 computer vision ...
  • 4 篇 school of comput...
  • 3 篇 ucla computer gr...
  • 3 篇 ucla center for ...
  • 3 篇 institute of com...

作者

  • 26 篇 egger jan
  • 22 篇 bischof horst
  • 15 篇 possegger horst
  • 13 篇 gsaxner christin...
  • 11 篇 pepe antonio
  • 11 篇 li jianning
  • 10 篇 lin wei
  • 10 篇 horst bischof
  • 10 篇 kleesiek jens
  • 8 篇 vincent lepetit
  • 8 篇 kozinski mateusz
  • 7 篇 pascal fua
  • 6 篇 horst possegger
  • 6 篇 fraundorfer frie...
  • 6 篇 zucker sw
  • 5 篇 fruhwirth-reisin...
  • 5 篇 mirza muhammad j...
  • 5 篇 ferreira andré
  • 5 篇 wei lin
  • 5 篇 alves victor

语言

  • 146 篇 英文
  • 7 篇 其他
检索条件"机构=Computer Vision and Graphics Laboratory"
153 条 记 录,以下是21-30 订阅
排序:
Frame-to-frame coherence and the hidden surface computation: Constraints for a convex world
Frame-to-frame coherence and the hidden surface computation:...
收藏 引用
作者: Hubschman, Harold Zucker, Steven W. Computer Vision and Graphics Laboratory Department of Electrical Engineering McGill University MontrealQC Canada
Frame-to-frame coherence is the highly structured relationship that exists between successive frames of certain animation sequences. From the point of view of the hidden surface computation, this implies that parts of... 详细信息
来源: 评论
Training sequential on-line boosting classifier for visual tracking
Training sequential on-line boosting classifier for visual t...
收藏 引用
作者: Grabner, Helmut Šochman, Jan Bischof, Horst Matas, Jiří Institute for Computer Graphics and Vision Graz University of Technology Austria Center for Machine Perception Czech Technical University Prague Czech Republic Computer Vision Laboratory ETH Zurich Switzerland
On-line boosting allows to adapt a trained classifier to changing environmental conditions or to use sequentially available training data. Yet, two important problems in the on-line boosting training remain unsolved: ... 详细信息
来源: 评论
FAST3D: Flow-Aware Self-Training for 3D Object Detectors  32
FAST3D: Flow-Aware Self-Training for 3D Object Detectors
收藏 引用
32nd British Machine vision Conference, BMVC 2021
作者: Fruhwirth-Reisinger, Christian Opitz, Michael Possegger, Horst Bischof, Horst Christian Doppler Laboratory for Embedded Machine Learning Austria Institute of Computer Graphics and Vision Graz University of Technology Austria Amazon
In the field of autonomous driving, self-training is widely applied to mitigate distribution shifts in LiDAR-based 3D object detectors. This eliminates the need for expensive, high-quality labels whenever the environm... 详细信息
来源: 评论
TAEC: Unsupervised action segmentation with temporal-Aware embedding and clustering  26
TAEC: Unsupervised action segmentation with temporal-Aware e...
收藏 引用
26th computer vision Winter Workshop, CVWW 2023
作者: Lin, Wei Kukleva, Anna Possegger, Horst Kuehne, Hilde Bischof, Horst Institute of Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Semantic 3D Computer Vision Austria Max-Planck-Institute for Informatics Germany Goethe University Frankfurt Germany
Temporal action segmentation in untrimmed videos has gained increased attention recently. However, annotating action classes and frame-wise boundaries is extremely time consuming and cost intensive, especially on larg... 详细信息
来源: 评论
A virtual reality platform for dynamic human-scene interaction  16
A virtual reality platform for dynamic human-scene interacti...
收藏 引用
2016 SIGGRAPH ASIA Virtual Reality Meets Physical Reality: Modelling and Simulating Virtual Humans and Environments, SA 2016
作者: Lin, Jenny Guo, Xingwen Shao, Jingyu Jiang, Chenfanfu Zhu, Yixin Zhu, Song-Chun UCLA Center for Vision Cognition Learning and Autonomy United States University of Hong Kong Electrical and Electronic Engineering Department Hong Kong UCLA Computer Graphics and Vision Laboratory United States
Both synthetic static and simulated dynamic 3D scene data is highly useful in the fields of computer vision and robot task planning. Yet their virtual nature makes it difficult for real agents to interact with such da... 详细信息
来源: 评论
Stability analysis for the generalized Hopfield neural networks with multi-level activation functions
Stability analysis for the generalized Hopfield neural netwo...
收藏 引用
作者: Liu, Yiguang You, Zhisheng Institute of Image and Graphics Key Laboratory of Fundamental Synthetic Vision Graphics and Image for National Defense Sichuan University Chengdu 610064 China School of Computer Science and Engineering Sichuan University Chengdu 610064 China
Using the continuity property of neuron state variables and Lyapunov functional, this paper religiously gives sufficient conditions ensuring the equilibrium number, local stable state number, global stability and comp... 详细信息
来源: 评论
Automatic computation of fundamental matrix based on voting  1st
Automatic computation of fundamental matrix based on voting
收藏 引用
1st International Conference on Smart Multimedia, ICSM 2018
作者: Li, Xin Sheng Yuan, Xuedong College of Computer Science Sichuan University ChengDu China Key Laboratory of Fundamental Synthetic Vision Graphics and Image for National Defense Sichuan University ChengDu China
To reconstruct point geometry from multiple images, a new method to compute the fundamental matrix is proposed in this paper. This method uses a new selection method for fundamental matrix under the RANSAC (Random Sam... 详细信息
来源: 评论
PET-Train: Automatic Ground Truth Generation from PET Acquisitions for Urinary Bladder Segmentation in CT Images using Deep Learning  11
PET-Train: Automatic Ground Truth Generation from PET Acquis...
收藏 引用
11th Biomedical Engineering International Conference, BMEiCON 2018
作者: Gsaxner, Christina Pfarrkirchner, Birgit Lindner, Lydia Pepe, Antonio Roth, Peter M. Egger, Jan Wallner, Jurgen Inst. of Computer Graphics and Vision Graz University of Technology Graz Austria Department of Maxillofacial Surgery Medical University of Graz Graz Austria Computer Algorithms for Medicine Laboratory Graz Austria
In this contribution, we propose an automatic ground truth generation approach that utilizes Positron Emission Tomography (PET) acquisitions to train neural networks for automatic urinary bladder segmentation in Compu... 详细信息
来源: 评论
Adjusting the Ground Truth Annotations for Connectivity-Based Learning to Delineate
arXiv
收藏 引用
arXiv 2021年
作者: Oner, Doruk Kozinski, Mateusz Citraro, Lenoardo Fua, Pascal The Computer Vision Laboratory EPFL Switzerland The Institute of Computer Vision and Graphics TU Graz Austria
Deep learning-based approaches to delineating 3D structure depend on accurate annotations to train the networks. Yet in practice, people, no matter how conscientious, have trouble precisely delineating in 3D and on a ... 详细信息
来源: 评论
DRT: Detection Refinement for Multiple Object Tracking  32
DRT: Detection Refinement for Multiple Object Tracking
收藏 引用
32nd British Machine vision Conference, BMVC 2021
作者: Wang, Bisheng Fruhwirth-Reisinger, Christian Possegger, Horst Bischof, Horst Cao, Guo School of Computer Science and Engineering Nanjing University of Science and Technology China Christian Doppler Laboratory for Embedded Machine Learning Austria Institute of Computer Graphics and Vision Graz University of Technology Austria
Deep learning methods have led to remarkable progress in multiple object tracking (MOT). However, when tracking in crowded scenes, existing methods still suffer from both inaccurate and missing detections. This paper ... 详细信息
来源: 评论