咨询与建议

限定检索结果

文献类型

  • 82 篇 会议
  • 71 篇 期刊文献

馆藏范围

  • 153 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 121 篇 工学
    • 89 篇 计算机科学与技术...
    • 87 篇 软件工程
    • 37 篇 光学工程
    • 29 篇 生物医学工程(可授...
    • 24 篇 生物工程
    • 17 篇 机械工程
    • 15 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 12 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 8 篇 交通运输工程
    • 5 篇 化学工程与技术
    • 3 篇 仪器科学与技术
    • 3 篇 建筑学
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 轻工技术与工程
  • 60 篇 理学
    • 26 篇 数学
    • 25 篇 生物学
    • 21 篇 物理学
    • 5 篇 化学
    • 5 篇 系统科学
    • 4 篇 统计学(可授理学、...
    • 2 篇 大气科学
  • 23 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 18 篇 医学
    • 16 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 13 篇 computer graphic...
  • 12 篇 cameras
  • 10 篇 computer vision
  • 9 篇 object detection
  • 7 篇 visualization
  • 7 篇 robustness
  • 6 篇 generative adver...
  • 6 篇 laboratories
  • 6 篇 augmented realit...
  • 5 篇 three-dimensiona...
  • 5 篇 virtual reality
  • 4 篇 target tracking
  • 4 篇 feature extracti...
  • 4 篇 detectors
  • 4 篇 classification (...
  • 4 篇 solid modeling
  • 4 篇 training
  • 3 篇 deep learning
  • 3 篇 magnetic resonan...
  • 3 篇 lighting

机构

  • 18 篇 institute for co...
  • 16 篇 computer algorit...
  • 13 篇 institute of com...
  • 10 篇 partner site ess...
  • 9 篇 key laboratory o...
  • 9 篇 christian dopple...
  • 8 篇 university medic...
  • 8 篇 christian dopple...
  • 7 篇 christian dopple...
  • 7 篇 institute for co...
  • 6 篇 university medic...
  • 6 篇 institute of com...
  • 6 篇 computer vision ...
  • 5 篇 institute of com...
  • 4 篇 institute for co...
  • 4 篇 computer vision ...
  • 4 篇 school of comput...
  • 3 篇 ucla computer gr...
  • 3 篇 ucla center for ...
  • 3 篇 institute of com...

作者

  • 26 篇 egger jan
  • 22 篇 bischof horst
  • 15 篇 possegger horst
  • 13 篇 gsaxner christin...
  • 11 篇 pepe antonio
  • 11 篇 li jianning
  • 10 篇 lin wei
  • 10 篇 horst bischof
  • 10 篇 kleesiek jens
  • 8 篇 vincent lepetit
  • 8 篇 kozinski mateusz
  • 7 篇 pascal fua
  • 6 篇 horst possegger
  • 6 篇 fraundorfer frie...
  • 6 篇 zucker sw
  • 5 篇 fruhwirth-reisin...
  • 5 篇 mirza muhammad j...
  • 5 篇 ferreira andré
  • 5 篇 wei lin
  • 5 篇 alves victor

语言

  • 146 篇 英文
  • 7 篇 其他
检索条件"机构=Computer Vision and Graphics Laboratory"
153 条 记 录,以下是71-80 订阅
排序:
Tablet versus phone: Depth perception in handheld augmented reality
Tablet versus phone: Depth perception in handheld augmented ...
收藏 引用
International Symposium on Mixed and Augmented Reality (ISMAR)
作者: Arindam Dey Graeme Jarvis Christian Sandor Gerhard Reitmayr University of South Australia Adelaide SA AU Magic Vision Laboratory University of South Australia Institute of Computer Graphics and Vision Graz University of Technology
Augmented Reality (AR) applications on mobile devices like smartphones and tablet computers have become increasingly popular. In this paper, for the first time in the AR domain, we present: (1) the influence of differ... 详细信息
来源: 评论
Persistent Homology with Improved Locality Information for more Effective Delineation
arXiv
收藏 引用
arXiv 2021年
作者: Oner, Doruk Garin, Adélie Kozinski, Mateusz Hess, Kathryn Fua, Pascal The Computer Vision Laboratory Switzerland The Laboratory for Topology and Neuroscience École Polytechnique Fédérale de Lausanne Lausanne1015 Switzerland The Institute of Computer Graphics and Vision TU Graz Graz8010 Austria
Persistent Homology (PH) has been successfully used to train networks to detect curvilinear structures and to improve the topological quality of their results. However, existing methods are very global and ignore the ... 详细信息
来源: 评论
The Norm Must Go On: Dynamic Unsupervised Domain Adaptation by Normalization
arXiv
收藏 引用
arXiv 2021年
作者: Mirza, Muhammad Jehanzeb Micorek, Jakub Possegger, Horst Bischof, Horst Institute for Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Embedded Machine Learning Austria
Domain adaptation is crucial to adapt a learned model to new scenarios, such as domain shifts or changing data distributions. Current approaches usually require a large amount of labeled or unlabeled data from the shi... 详细信息
来源: 评论
Optimization of ultrasonic imaging using persistence and filter technology
收藏 引用
2013 2nd International Conference on Materials Science and Technology, ICMST 2013
作者: Guo, De Quan Yang, Hong Yu Zhang, Cong Yao Liu, Dong C. Key Laboratory of Fundamental Synthetic Vision Graphics and Image Science for National Defense Sichuan University Sichuan Province China Department of Machinery Engineering Neijiang Vocational and Technical College Neijiang China College of Computer Science Sichuan University Sichuan Province China
B-mode ultrasonic images are often pervaded by the electronics noise and speckle artifact, which may make the interpretation of medical images difficult. In this paper, a legible method for ultrasonic image is constru... 详细信息
来源: 评论
SAILOR: Scaling Anchors via Insights into Latent Object Representation
arXiv
收藏 引用
arXiv 2022年
作者: Malić, Dušan Fruhwirth-Reisinger, Christian Possegger, Horst Bischof, Horst Institute of Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Embedded Machine Learning Austria
LiDAR 3D object detection models are inevitably biased towards their training dataset. The detector clearly exhibits this bias when employed on a target dataset, particularly towards object sizes. However, object size... 详细信息
来源: 评论
Training sequential on-line boosting classifier for visual tracking
Training sequential on-line boosting classifier for visual t...
收藏 引用
International Conference on Pattern Recognition
作者: Helmut Grabner Jan Sochman Horst Bischof Jiri Matas Institute for Computer Graphics and Vision Graz University of Technology Austria Computer Vision Laboratory ETH Zurich Switzerland Center for Machine Perception Czech Technical University Prague Czech Republic
On-line boosting allows to adapt a trained classifier to changing environmental conditions or to use sequentially available training data. Yet, two important problems in the on-line boosting training remain unsolved: ... 详细信息
来源: 评论
Multicenter aortic vessel tree extraction using deep learning
Multicenter aortic vessel tree extraction using deep learnin...
收藏 引用
Medical Imaging 2023: Biomedical Applications in Molecular, Structural, and Functional Imaging
作者: Scharinger, Bernhard Pepe, Antonio Jin, Yuan Gsaxner, Christina Li, Jianning Egger, Jan Graz University of Technology Institute for Computer Graphics and Vision Inffeldgasse 16c/II GrazA-8010 Austria Computer Algorithms for Medicine Laboratory Graz Austria Girardetstrasse 2 Essen45131 Germany Research Center for Connected Healthcare Big Data Zhejiang Lab Zhejiang Hangzhou311121 China
The aorta is the largest vessel of the human body and its pathological degenerations, such as dissections and aneurysms, can be life threatening. An automatic and fast segmentation of the aorta can therefore be a help... 详细信息
来源: 评论
A two-stage Otsu'S thresholding based method on a 2D histogram
A two-stage Otsu'S thresholding based method on a 2D histogr...
收藏 引用
IEEE International Conference on Intelligent computer Communication and Processing (ICCP)
作者: Puthipong Sthitpattanapongsa Thitiwan Srinark Graphics Innovation and Vision Engineering (GIVE) Laboratory Department of Computer Engineering Faculty of Engineering Kasetsart University Bangkok Thailand
We propose a fast and robust thresholding method that can overcome the shortcoming of the traditional and two-dimensional (2D) Otsu's methods. Our method takes advantage of the gradient gray level to divide the 2D... 详细信息
来源: 评论
ActMAD: Activation Matching to Align Distributions for Test-Time-Training
ActMAD: Activation Matching to Align Distributions for Test-...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: M. Jehanzeb Mirza Pol Jané Soneira Wei Lin Mateusz Kozinski Horst Possegger Horst Bischof Institute for Computer Graphics and Vision TU Graz Austria Christian Doppler Laboratory for Embedded Machine Learning Institute of Control Systems KIT Germany Christian Doppler Laboratory for Semantic 3D Computer Vision
Test-Time-Training (TTT) is an approach to cope with out-of-distribution (OOD) data by adapting a trained model to distribution shifts occurring at test-time. We propose to perform this adaptation via Activation Match...
来源: 评论
ActMAD: Activation Matching to Align Distributions for Test-Time-Training
arXiv
收藏 引用
arXiv 2022年
作者: Mirza, Muhammad Jehanzeb Soneira, Pol Jané Lin, Wei Kozinski, Mateusz Possegger, Horst Bischof, Horst Institute for Computer Graphics and Vision TU Graz Austria Christian Doppler Laboratory for Embedded Machine Learning Institute of Control Systems KIT Germany Christian Doppler Laboratory for Semantic 3D Computer Vision
Test-Time-Training (TTT) is an approach to cope with out-of-distribution (OOD) data by adapting a trained model to distribution shifts occurring at test-time. We propose to perform this adaptation via Activation Match... 详细信息
来源: 评论