咨询与建议

限定检索结果

文献类型

  • 73 篇 会议
  • 50 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 125 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 78 篇 工学
    • 53 篇 计算机科学与技术...
    • 47 篇 软件工程
    • 38 篇 光学工程
    • 34 篇 生物医学工程(可授...
    • 23 篇 生物工程
    • 12 篇 电气工程
    • 11 篇 信息与通信工程
    • 10 篇 电子科学与技术(可...
    • 8 篇 机械工程
    • 5 篇 力学(可授工学、理...
    • 4 篇 控制科学与工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 核科学与技术
    • 2 篇 农业工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
  • 52 篇 理学
    • 25 篇 生物学
    • 23 篇 数学
    • 20 篇 物理学
    • 9 篇 统计学(可授理学、...
  • 19 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 9 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 13 篇 医学
    • 13 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 10 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 3 篇 农学
    • 2 篇 作物学
  • 1 篇 经济学

主题

  • 16 篇 clustering algor...
  • 15 篇 computer vision
  • 13 篇 image segmentati...
  • 12 篇 image analysis
  • 8 篇 laboratories
  • 7 篇 neural networks
  • 7 篇 computed tomogra...
  • 6 篇 biomedical imagi...
  • 6 篇 bones
  • 5 篇 subspace constra...
  • 5 篇 pattern recognit...
  • 5 篇 three dimensiona...
  • 5 篇 image color anal...
  • 5 篇 shape
  • 4 篇 euclidean distan...
  • 4 篇 object detection
  • 4 篇 medical imaging
  • 4 篇 fuzzy neural net...
  • 4 篇 image coding
  • 4 篇 image reconstruc...

机构

  • 8 篇 fraunhofer insti...
  • 8 篇 computer vision ...
  • 8 篇 heidelberg
  • 6 篇 centre for medic...
  • 6 篇 computer vision ...
  • 5 篇 image analysis i...
  • 5 篇 fraunhofer mevis...
  • 5 篇 ihu strasbourg s...
  • 5 篇 computer vision ...
  • 5 篇 diagnostic image...
  • 4 篇 electrical engin...
  • 4 篇 department of qu...
  • 4 篇 heidelberg divis...
  • 4 篇 heidelberg divis...
  • 4 篇 centre for biome...
  • 4 篇 department of ra...
  • 4 篇 institute for pa...
  • 4 篇 department of pa...
  • 4 篇 institute of ima...
  • 4 篇 institute of ima...

作者

  • 15 篇 s. mitra
  • 11 篇 merhof dorit
  • 8 篇 glocker ben
  • 7 篇 melih s. aslan
  • 7 篇 ben arnold
  • 7 篇 weickert joachim
  • 7 篇 aly a. farag
  • 6 篇 rajpoot nasir
  • 6 篇 kozubek michal
  • 6 篇 bakas spyridon
  • 6 篇 ping xiang
  • 5 篇 reinke annika
  • 5 篇 kofler florian
  • 5 篇 müller henning
  • 5 篇 eisenmann matthi...
  • 5 篇 konukoglu ender
  • 5 篇 kainz bernhard
  • 5 篇 menze bjoern
  • 5 篇 feuerhake friedr...
  • 5 篇 isensee fabian

语言

  • 123 篇 英文
  • 1 篇 德文
  • 1 篇 其他
检索条件"机构=Computer Vision and Image Analysis"
125 条 记 录,以下是21-30 订阅
排序:
DermoSegDiff: A Boundary-aware Segmentation Diffusion Model for Skin Lesion Delineation
arXiv
收藏 引用
arXiv 2023年
作者: Bozorgpour, Afshin Sadegheih, Yousef Kazerouni, Amirhossein Azad, Reza Merhof, Dorit Institute of Image Analysis and Computer Vision Faculty of Informatics and Data Science University of Regensburg Regensburg Germany School of Electrical Engineering Iran University of Science and Technology Iran Faculty of Electrical Engineering and Information Technology RWTH Aachen University Aachen Germany Fraunhofer Institute for Digital Medicine MEVIS Bremen Germany
Skin lesion segmentation plays a critical role in the early detection and accurate diagnosis of dermatological conditions. Denoising Diffusion Probabilistic Models (DDPMs) have recently gained attention for their exce... 详细信息
来源: 评论
TISSUE CONCEPTS: SUPERVISED FOUNDATION MODELS IN COMPUTATIONAL PATHOLOGY
arXiv
收藏 引用
arXiv 2024年
作者: Nicke, Till Schäfer, Jan Raphael Höfener, Henning Feuerhake, Friedrich Merhof, Dorit Kießling, Fabian Lotz, Johannes Fraunhofer Institute for Digital Medicine MEVIS Bremen Germany Fraunhofer Institute for Digital Medicine MEVIS Lübeck Germany Fraunhofer Institute for Digital Medicine MEVIS Aachen Germany Institute for Pathology Hannover Medical School Hannover Germany Institute of Image Analysis and Computer Vision University of Regensburg Regensburg Germany Institute for Experimental Molecular Imaging RWTH Aachen University Aachen Germany
Due to the increasing workload of pathologists, the need for automation to support diagnostic tasks and quantitative biomarker evaluation is becoming more and more apparent. Foundation models have the potential to imp... 详细信息
来源: 评论
DAE-Former: Dual Attention-guided Efficient Transformer for Medical image Segmentation
arXiv
收藏 引用
arXiv 2022年
作者: Azad, Reza Arimond, René Aghdam, Ehsan Khodapanah Kazerouni, Amirhossein Merhof, Dorit Institute of Imaging and Computer Vision RWTH Aachen University Aachen Germany Department of Electrical Engineering Shahid Beheshti University Tehran Iran School of Electrical Engineering Iran University of Science and Technology Tehran Iran Institute of Image Analysis and Computer Vision Faculty of Informatics and Data Science University of Regensburg Regensburg Germany Fraunhofer Institute for Digital Medicine MEVIS Bremen Germany
Transformers have recently gained attention in the computer vision domain due to their ability to model long-range dependencies. However, the self-attention mechanism, which is the core part of the Transformer model, ... 详细信息
来源: 评论
Enhancing Medical image Segmentation with TransCeption: A Multi-Scale Feature Fusion Approach
arXiv
收藏 引用
arXiv 2023年
作者: Azad, Reza Jia, Yiwei Aghdam, Ehsan Khodapanah Cohen-Adad, Julien Merhof, Dorit The Institute of Imaging and Computer Vision RWTH Aachen University Aachen52074 Germany The Department of Electrical Engineering Shahid Beheshti University Tehran*** Iran The Mila Quebec AI Institute Canada The Functional Neuroimaging Unit CRIUGM University of Montreal Canada The NeuroPoly Lab Institute of Biomedical Engineering Polytechnique Montreal MontrealH3T 1J4 Canada The Institute of Image Analysis and Computer Vision Faculty of Informatics and Data Science University of Regensburg Regensburg93053 Germany The Fraunhofer Institute for Digital Medicine MEVIS Bremen28359 Germany
While CNN-based methods have been the cornerstone of medical image segmentation due to their promising performance and robustness, they suffer from limitations in capturing long-range dependencies. Transformer-based a... 详细信息
来源: 评论
Implicit Neural Representation in Medical Imaging: A Comparative Survey
arXiv
收藏 引用
arXiv 2023年
作者: Molaei, Amirali Aminimehr, Amirhossein Tavakoli, Armin Kazerouni, Amirhossein Azad, Bobby Azad, Reza Merhof, Dorit School of Computer Engineering Iran University of Science and Technology Tehran Iran School of Electrical Engineering Iran University of Science and Technology Tehran Iran South Dakota State University BrookingsSD United States Faculty of Electrical Engineering and Information Technology RWTH Aachen University Aachen Germany Institute of Image Analysis and Computer Vision Faculty of Informatics and Data Science University of Regensburg Regensburg Germany Fraunhofer Institute for Digital Medicine MEVIS Bremen Germany
Implicit neural representations (INRs) have gained prominence as a powerful paradigm in scene reconstruction and computer graphics, demonstrating remarkable results. By utilizing neural networks to parameterize data t... 详细信息
来源: 评论
Sampling possible reconstructions of undersampled acquisitions in MR imaging with a deep learned prior
arXiv
收藏 引用
arXiv 2020年
作者: Tezcan, Kerem Can Karani, Neerav Baumgartner, Christian F. Konukoglu, Ender Computer Vision Lab ETH Zürich Switzerland Medical Image Analysis Group University of Tübingen Germany
Undersampling the k-space during MR acquisitions saves time, however results in an ill-posed inversion problem, leading to an infinite set of images as possible solutions. Traditionally, this is tackled as a reconstru... 详细信息
来源: 评论
RecycleNet: Latent Feature Recycling Leads to Iterative Decision Refinement
RecycleNet: Latent Feature Recycling Leads to Iterative Deci...
收藏 引用
IEEE Workshop on Applications of computer vision (WACV)
作者: Gregor Koehler Tassilo Wald Constantin Ulrich David Zimmerer Paul F. Jaeger Jörg K. H. Franke Simon Kohl Fabian Isensee Klaus H. Maier-Hein Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Information and Data Science School for Health Karlsruhe/Heidelberg Germany Helmholtz Imaging DKFZ National Center for Tumor Diseases (NCT) NCT Heidelberg a Partnership Between DKFZ University Medical Center Heidelberg Interactive Machine Learning Group DKFZ Machine Learning Lab University of Freiburg Freiburg Germany Latent Labs (***) London UK Applied Computer Vision Lab DKFZ Pattern Analysis and Learning Group Heidelberg University Hospital Heidelberg Germany
Despite the remarkable success of deep learning systems over the last decade, a key difference still remains between neural network and human decision-making: As humans, we can not only form a decision on the spot, bu...
来源: 评论
RecycleNet: Latent Feature Recycling Leads to Iterative Decision Refinement
arXiv
收藏 引用
arXiv 2023年
作者: Koehler, Gregor Wald, Tassilo Ulrich, Constantin Zimmerer, David Jaeger, Paul F. Franke, Jörg K.H. Kohl, Simon Isensee, Fabian Maier-Hein, Klaus H. Heidelberg Division of Medical Image Computing Germany Helmholtz Information and Data Science School for Health Karlsruhe Heidelberg Germany Helmholtz Imaging DKFZ Germany NCT Heidelberg a partnership between DKFZ University Medical Center Heidelberg Germany Interactive Machine Learning Group DKFZ Applied Computer Vision Lab DKFZ Machine Learning Lab University of Freiburg Freiburg Germany London United Kingdom Pattern Analysis and Learning Group Heidelberg University Hospital Heidelberg Germany
Despite the remarkable success of deep learning systems over the last decade, a key difference still remains between neural network and human decision-making: As humans, we can not only form a decision on the spot, bu... 详细信息
来源: 评论
One-Shot Learning-Based Handwritten Word Recognition  5th
One-Shot Learning-Based Handwritten Word Recognition
收藏 引用
5th Asian Conference on Pattern Recognition, ACPR 2019
作者: Chakrapani Gv, Asish Chanda, Sukalpa Pal, Umapada Doermann, David Electronics and Communication Department Manipal University Jaipur Jaipur India Centre for Image Analysis Department of Information Technology Uppsala University Uppsala Sweden Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India University at Buffalo SUNY Buffalo United States
One-Shot and Few-shot Learning algorithms have emerged as techniques that can imitate a humans ability to learn from very few examples. This is an advantage over traditional deep networks which require a lot of traini... 详细信息
来源: 评论
LYSTO: The Lymphocyte Assessment Hackathon and Benchmark Dataset
arXiv
收藏 引用
arXiv 2023年
作者: Jiao, Yiping van der Laak, Jeroen Albarqouni, Shadi Li, Zhang Tan, Tao Bhalerao, Abhir Ma, Jiabo Sun, Jiamei Pocock, Johnathan Pluim, Josien P.W. Koohbanani, Navid Alemi Bashir, Raja Muhammad Saad Raza, Shan E Ahmed Liu, Sibo Graham, Simon Wetstein, Suzanne Khurram, Syed Ali Watson, Thomas Rajpoot, Nasir Veta, Mitko Ciompi, Francesco Department of Pathology Radboud University Medical Center Nijmegen Netherlands School of Artificial Intelligence Nanjing University of Information Science Technology China Center for Medical Image Science and Visualization Linköping University Linköping Sweden Helmholtz AI Helmholtz Zentrum München Nuerherberg 85764 Germany Faculty of Informatics Technical University of Munich Garching85748 Germany College of Aerospace Science and Engineering National University of Defense Technology China Hunan Provincial Key Laboratory of Image Measurement and Vision Navigation China Macao Polytechnic University China Department of Computer Science University of Warwick Coventry United Kingdom Huazhong University of Science and Technology China Singapore Medical Image Analysis Group Department of Biomedical Engineering Eindhoven University of Technology Eindhoven Netherlands School of Clinical Dentistry University of Sheffield Sheffield United Kingdom United Kingdom
We introduce LYSTO, the Lymphocyte Assessment Hackathon, which was held in conjunction with the MICCAI 2019 Conference in Shenzen (China). The competition required participants to automatically assess the number of ly... 详细信息
来源: 评论