咨询与建议

限定检索结果

文献类型

  • 73 篇 会议
  • 50 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 125 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 78 篇 工学
    • 53 篇 计算机科学与技术...
    • 47 篇 软件工程
    • 38 篇 光学工程
    • 34 篇 生物医学工程(可授...
    • 23 篇 生物工程
    • 12 篇 电气工程
    • 11 篇 信息与通信工程
    • 10 篇 电子科学与技术(可...
    • 8 篇 机械工程
    • 5 篇 力学(可授工学、理...
    • 4 篇 控制科学与工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 核科学与技术
    • 2 篇 农业工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
  • 52 篇 理学
    • 25 篇 生物学
    • 23 篇 数学
    • 20 篇 物理学
    • 9 篇 统计学(可授理学、...
  • 19 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 9 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 13 篇 医学
    • 13 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 10 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 3 篇 农学
    • 2 篇 作物学
  • 1 篇 经济学

主题

  • 16 篇 clustering algor...
  • 15 篇 computer vision
  • 13 篇 image segmentati...
  • 12 篇 image analysis
  • 8 篇 laboratories
  • 7 篇 neural networks
  • 7 篇 computed tomogra...
  • 6 篇 biomedical imagi...
  • 6 篇 bones
  • 5 篇 subspace constra...
  • 5 篇 pattern recognit...
  • 5 篇 three dimensiona...
  • 5 篇 image color anal...
  • 5 篇 shape
  • 4 篇 euclidean distan...
  • 4 篇 object detection
  • 4 篇 medical imaging
  • 4 篇 fuzzy neural net...
  • 4 篇 image coding
  • 4 篇 image reconstruc...

机构

  • 8 篇 fraunhofer insti...
  • 8 篇 computer vision ...
  • 8 篇 heidelberg
  • 6 篇 centre for medic...
  • 6 篇 computer vision ...
  • 5 篇 image analysis i...
  • 5 篇 fraunhofer mevis...
  • 5 篇 ihu strasbourg s...
  • 5 篇 computer vision ...
  • 5 篇 diagnostic image...
  • 4 篇 electrical engin...
  • 4 篇 department of qu...
  • 4 篇 heidelberg divis...
  • 4 篇 heidelberg divis...
  • 4 篇 centre for biome...
  • 4 篇 department of ra...
  • 4 篇 institute for pa...
  • 4 篇 department of pa...
  • 4 篇 institute of ima...
  • 4 篇 institute of ima...

作者

  • 15 篇 s. mitra
  • 11 篇 merhof dorit
  • 8 篇 glocker ben
  • 7 篇 melih s. aslan
  • 7 篇 ben arnold
  • 7 篇 weickert joachim
  • 7 篇 aly a. farag
  • 6 篇 rajpoot nasir
  • 6 篇 kozubek michal
  • 6 篇 bakas spyridon
  • 6 篇 ping xiang
  • 5 篇 reinke annika
  • 5 篇 kofler florian
  • 5 篇 müller henning
  • 5 篇 eisenmann matthi...
  • 5 篇 konukoglu ender
  • 5 篇 kainz bernhard
  • 5 篇 menze bjoern
  • 5 篇 feuerhake friedr...
  • 5 篇 isensee fabian

语言

  • 123 篇 英文
  • 1 篇 德文
  • 1 篇 其他
检索条件"机构=Computer Vision and Image Analysis"
125 条 记 录,以下是31-40 订阅
排序:
LEDNet: Deep Network for Single image Haze Removal  2018
LEDNet: Deep Network for Single Image Haze Removal
收藏 引用
Proceedings of the 11th Indian Conference on computer vision, Graphics and image Processing
作者: Akshay Dudhane Subrahmanyam Murala Abhinav Dhall Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar India Learning Affect and Semantic Image Analysis Group Indian Institute of Technology Ropar India
Haze during the bad weather, degrades the visibility of the scene drastically. Degradation of scene visibility varies with respect to the transmission coefficient/map (Tc) of the scene. Estimation of accurate Tc is ke... 详细信息
来源: 评论
Unsupervised many-to-many stain translation for histological image augmentation to improve classification accuracy
收藏 引用
Journal of Pathology Informatics 2023年 14卷 100195-100195页
作者: Berijanian, Maryam Schaadt, Nadine S. Huang, Boqiang Lotz, Johannes Feuerhake, Friedrich Merhof, Dorit Department of Computational Mathematics Science and Engineering (CMSE) Michigan State University East Lansing United States Institute for Pathology Hannover Medical School Hannover Germany Institute of Image Analysis and Computer Vision Faculty of Informatics and Data Science University of Regensburg Regensburg Germany Fraunhofer Institute for Digital Medicine MEVIS Lübeck Germany Institute for Neuropathology University Clinic Freiburg Freiburg Germany Fraunhofer Institute for Digital Medicine MEVIS Bremen Germany Fraunhofer Institute for Digital Medicine MEVIS Bremen Germany
Background: Deep learning tasks, which require large numbers of images, are widely applied in digital pathology. This poses challenges especially for supervised tasks since manual image annotation is an expensive and ... 详细信息
来源: 评论
nnDetection: A Self-configuring Method for Medical Object Detection
arXiv
收藏 引用
arXiv 2021年
作者: Baumgartner, Michael Jäger, Paul F. Isensee, Fabian Maier-Hein, Klaus H. Division of Medical Image Computing German Cancer Research Center Heidelberg Germany Interactive Machine Learning Group German Cancer Research Center Germany HIP Applied Computer Vision Lab. German Cancer Research Center Germany Pattern Analysis and Learning Group Heidelberg University Hospital Germany
Simultaneous localisation and categorization of objects in medical images, also referred to as medical object detection, is of high clinical relevance because diagnostic decisions often depend on rating of objects rat... 详细信息
来源: 评论
Neuron segmentation using 3D wavelet integrated encoder-decoder network
arXiv
收藏 引用
arXiv 2021年
作者: Li, Qiufu Shen, Linlin Computer Vision Institute College of Computer Science and Software Engineering Shen zhen University Shenzhen518060 China AI Research Center for Medical Image Analysis and Diagnosis Shenzhen University Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China Marshall Laboratory of Biomedical Engineering Shenzhen University Shenzhen518060 China
Motivation: 3D neuron segmentation is a key step for the neuron digital reconstruction, which is essential for exploring brain circuits and understanding brain functions. However, the fine line-shaped nerve fibers of ... 详细信息
来源: 评论
Self-supervised linear motion deblurring
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Peidong Janai, Joel Pollefeys, Marc Sattler, Torsten Geiger, Andreas Computer Vision and Geometry Group Department of Computer Science ETH Zürich Switzerland Autonomous Vision Group Max Planck Institute for Intelligent Systems Univeristy of Tübingen Tübingen Germany Microsoft Mixed Reality and Artificial Intelligence Lab Zürich Switzerland Computer Vision and Medical Image Analysis Group Chalmers University of Technology Sweden
Motion blurry images challenge many computer vision algorithms, e.g., feature detection, motion estimation, or object recognition. Deep convolutional neural networks are state-of-the-art for image deblurring. However,... 详细信息
来源: 评论
Face recognition - A one-shot learning perspective  15
Face recognition - A one-shot learning perspective
收藏 引用
15th International Conference on Signal image Technology and Internet Based Systems, SISITS 2019
作者: Chanda, Sukalpa Gv, Asish Chakrapani Brun, Anders Hast, Anders Pal, Umapada Doermann, David Department of Information Technology Østfold University College Norway Computer Vision and Pattern Recognition Unit Indian Statistical Institute India Centre for Image Analysis Uppsala University Sweden Computer Science and Engineering University at Buffalo United States
Ability to learn from a single instance is something unique to the human species and One-shot learning algorithms try to mimic this special capability. On the other hand, despite the fantastic performance of Deep Lear... 详细信息
来源: 评论
Artificial Intelligence Could Alert for Focal Skeleton/Bone Marrow Uptake in Hodgkińs Lymphoma Patients Staged With FDG-PET/CT
Research Square
收藏 引用
Research Square 2021年
作者: Sadik, May López-Urdaneta, Jesús Ulén, Johannes Enqvist, Olof Krupic, Armin Kumar, Rajender Andersson, Per-Ola Trägårdh, Elin Molecular and Clinical Medicine Clinical Physiology Sahlgrenska University Hospital Sahlgrenska Academy The University of Gothenburg Sweden Eigenvision AB Signals and Systems Image Analysis and Computer Vision Chalmers University of Technology Sweden Post Graduate Institute of Medical Education and Research Haematology Södra Älvsborg Hospital Sweden Clinical Physiology and Nuclear Medicine Skåne University Hospital Sweden
Purpose: To develop an artificial intelligence (AI)-based method for the detection of focal skeleton/bone marrow uptake (BMU) in patients with Hodgkińs lymphoma (HL) undergoing staging with FDG-PET/CT. The results of... 详细信息
来源: 评论
Machine learning with multi-site imaging data: An empirical study on the impact of scanner effects
arXiv
收藏 引用
arXiv 2019年
作者: Glocker, Ben Robinson, Robert Castro, Daniel C. Dou, Qi Konukoglu, Ender Biomedical Image Analysis Group Imperial College London United Kingdom Computer Vision Laboratory ETH Zurich Zurich Switzerland
This is an empirical study to investigate the impact of scanner effects when using machine learning on multi-site neuroimaging data. We utilize structural T1-weighted brain MRI obtained from two different studies, Cam... 详细信息
来源: 评论
Attention alignment by linear space projection for video features extraction
Attention alignment by linear space projection for video fea...
收藏 引用
IEEE Workshop on Advanced Robotics and its Social Impacts, ARSO
作者: Yuan Shenqiang Mei Xue He Yi Zhang Jin dedicate in computer vision deep learning action recognition Computer Vision Image Processing Video Data Analysis and Research Nanjing Tech University in N. Jing J. Su CN
Video feature extraction is the basis of research on video data. At present, many models based on convolution neural networks for features extracting need to stack deeper network layers to improve the robustness, whic...
来源: 评论
Geometric image labeling with global convex labeling constraints  11th
Geometric image labeling with global convex labeling constra...
收藏 引用
11th International Conference on Energy Minimization Methods in computer vision and Pattern Recognition, EMMVCPR 2017
作者: Zern, Artjom Rohr, Karl Schnörr, Christoph Image and Pattern Analysis Group Heidelberg University Heidelberg Germany Biomedical Computer Vision Group BIOQUANT Heidelberg University Heidelberg Germany
In [2], a smooth geometric labeling approach was introduced by following the Riemannian gradient flow of a given objective function on the so-called assignment manifold. The approach evaluates a user-defined data term... 详细信息
来源: 评论