咨询与建议

限定检索结果

文献类型

  • 676 篇 会议
  • 230 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 913 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 421 篇 工学
    • 258 篇 计算机科学与技术...
    • 223 篇 软件工程
    • 132 篇 光学工程
    • 102 篇 电气工程
    • 100 篇 生物医学工程(可授...
    • 83 篇 信息与通信工程
    • 66 篇 电子科学与技术(可...
    • 66 篇 生物工程
    • 37 篇 控制科学与工程
    • 32 篇 机械工程
    • 30 篇 仪器科学与技术
    • 18 篇 化学工程与技术
    • 13 篇 土木工程
    • 12 篇 材料科学与工程(可...
    • 11 篇 建筑学
    • 9 篇 安全科学与工程
    • 8 篇 航空宇航科学与技...
  • 277 篇 理学
    • 133 篇 物理学
    • 125 篇 数学
    • 79 篇 生物学
    • 55 篇 统计学(可授理学、...
    • 19 篇 化学
    • 10 篇 系统科学
  • 74 篇 管理学
    • 41 篇 管理科学与工程(可...
    • 37 篇 图书情报与档案管...
    • 15 篇 工商管理
  • 67 篇 医学
    • 61 篇 临床医学
    • 48 篇 基础医学(可授医学...
    • 32 篇 药学(可授医学、理...
    • 9 篇 公共卫生与预防医...
  • 9 篇 艺术学
  • 7 篇 农学
  • 5 篇 教育学
  • 4 篇 法学
  • 1 篇 经济学

主题

  • 137 篇 computer vision
  • 117 篇 laboratories
  • 106 篇 image segmentati...
  • 84 篇 image analysis
  • 63 篇 image processing
  • 54 篇 feature extracti...
  • 53 篇 magnetic resonan...
  • 53 篇 shape
  • 48 篇 cameras
  • 47 篇 pixel
  • 45 篇 image reconstruc...
  • 38 篇 humans
  • 38 篇 layout
  • 35 篇 image edge detec...
  • 34 篇 machine vision
  • 34 篇 biomedical imagi...
  • 33 篇 data mining
  • 33 篇 algorithm design...
  • 32 篇 robustness
  • 32 篇 principal compon...

机构

  • 19 篇 control and inte...
  • 12 篇 department of el...
  • 10 篇 computer vision ...
  • 10 篇 remote sensing s...
  • 10 篇 computer vision ...
  • 10 篇 image analysis a...
  • 10 篇 remote sensing s...
  • 9 篇 radiology image ...
  • 9 篇 department of ra...
  • 9 篇 department of ra...
  • 9 篇 computational in...
  • 8 篇 remote sensing s...
  • 8 篇 centre for medic...
  • 8 篇 department of qu...
  • 8 篇 image analysis l...
  • 8 篇 computer vision ...
  • 8 篇 department of el...
  • 8 篇 laboratory for v...
  • 7 篇 computer vision ...
  • 7 篇 computer vision ...

作者

  • 29 篇 hamid soltanian-...
  • 20 篇 chein-i chang
  • 18 篇 a.c. bovik
  • 17 篇 soltanian-zadeh ...
  • 15 篇 s. mitra
  • 14 篇 h. knutsson
  • 14 篇 aly a. farag
  • 13 篇 timofte radu
  • 13 篇 a.a. farag
  • 13 篇 chang chein-i
  • 12 篇 m.m. trivedi
  • 12 篇 h. soltanian-zad...
  • 11 篇 chang chein-i.
  • 9 篇 bakas spyridon
  • 9 篇 j. goutsias
  • 9 篇 felsberg michael
  • 9 篇 e.j. delp
  • 8 篇 kofler florian
  • 8 篇 d. poussart
  • 8 篇 menze bjoern

语言

  • 875 篇 英文
  • 37 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Image Analysis Laboratory Department of Electrical and Computer Engineering"
913 条 记 录,以下是91-100 订阅
排序:
Transclaw U-Net: Claw U-Net With Transformers for Medical image Segmentation
Transclaw U-Net: Claw U-Net With Transformers for Medical Im...
收藏 引用
IEEE International Conference on Information Communication and Signal Processing (ICICSP)
作者: Chang Yao Menghan Hu Qingli Li Guangtao Zhai Xiao-Ping Zhang Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University Shanghai China Institute of Image Communication and Information Processing Shanghai Jiao Tong University Shanghai China Department of Electrical Computer and Biomedical Engineering Ryerson University Toronto Canada
In medical image analysis, the long-range spatial features are often not accurately obtained by the traditional convolutional neural networks. Hence, we propose a TransClaw U-Net network structure. The transformer par... 详细信息
来源: 评论
An Insight Into Neurodegeneration: Harnessing Functional MRI Connectivity in the Diagnosis of Mild Cognitive Impairment
An Insight Into Neurodegeneration: Harnessing Functional MRI...
收藏 引用
17th International Joint Conference on Biomedical engineering Systems and Technologies, BIOSTEC 2024
作者: Han, Shuning Sun, Zhe Zhao, Kanhao Duan, Feng Caiafa, Cesar F. Zhang, Yu Solé-Casals, Jordi Data and Signal Processing Research Group University of Vic-Central University of Catalonia Catalonia Vic08500 Spain Image Processing Research Group RIKEN Center for Advanced Photonics Riken Saitama Wako-Shi Japan Faculty of Health Data Science Juntendo University Chiba Urayasu Japan Department of Bioengineering Lehigh University BethlehemPA18015 United States Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation Nankai University Tianjin China Instituto Argentino de Radioastronomía-CCT La Plata CONICET/ CIC-PBA/ UNLP V. Elisa 1894 Argentina Department of Electrical and Computer Engineering Lehigh University BethlehemPA18015 United States Department of Psychiatry University of Cambridge CambridgeCB20SZ United Kingdom
Alzheimer’s disease is a progressive form of memory loss that worsens over time. Detecting it early, when memory issues are mild, is crucial for effective interventions. Recent advancements in computer technology, sp... 详细信息
来源: 评论
LYSTO: The Lymphocyte Assessment Hackathon and Benchmark Dataset
arXiv
收藏 引用
arXiv 2023年
作者: Jiao, Yiping van der Laak, Jeroen Albarqouni, Shadi Li, Zhang Tan, Tao Bhalerao, Abhir Ma, Jiabo Sun, Jiamei Pocock, Johnathan Pluim, Josien P.W. Koohbanani, Navid Alemi Bashir, Raja Muhammad Saad Raza, Shan E Ahmed Liu, Sibo Graham, Simon Wetstein, Suzanne Khurram, Syed Ali Watson, Thomas Rajpoot, Nasir Veta, Mitko Ciompi, Francesco Department of Pathology Radboud University Medical Center Nijmegen Netherlands School of Artificial Intelligence Nanjing University of Information Science Technology China Center for Medical Image Science and Visualization Linköping University Linköping Sweden Helmholtz AI Helmholtz Zentrum München Nuerherberg 85764 Germany Faculty of Informatics Technical University of Munich Garching85748 Germany College of Aerospace Science and Engineering National University of Defense Technology China Hunan Provincial Key Laboratory of Image Measurement and Vision Navigation China Macao Polytechnic University China Department of Computer Science University of Warwick Coventry United Kingdom Huazhong University of Science and Technology China Singapore Medical Image Analysis Group Department of Biomedical Engineering Eindhoven University of Technology Eindhoven Netherlands School of Clinical Dentistry University of Sheffield Sheffield United Kingdom United Kingdom
We introduce LYSTO, the Lymphocyte Assessment Hackathon, which was held in conjunction with the MICCAI 2019 Conference in Shenzen (China). The competition required participants to automatically assess the number of ly... 详细信息
来源: 评论
Line Drawing Guided Progressive Inpainting of Mural Damage
arXiv
收藏 引用
arXiv 2022年
作者: Li, Luxi Zou, Qin Zhang, Fan Yu, Hongkai Chen, Long Song, Chengfang Huang, Xianfeng Wang, Xiaoguang Li, Qingquan Department of Computer Science Technology United International College of Beijing Normal University HongKong Baptist University Zhuhai China Machine Vision and Robotics Laboratory School of Computer Science Wuhan University Wuhan China State Key Laboratory of Surveying Mapping and Remote Sensing Information Engineering Wuhan University Wuhan China Department of Electrical Engineering and Computer Science Cleveland State University OH United States Institute of Automation Chinese Academy of Sciences Beijing China Cultural Heritage Intelligent Computing Laboratory Wuhan University Wuhan China Guangming Laboratory Shenzhen University Shenzhen China
Mural image inpainting is far less explored compared to its natural image counterpart and remains largely unsolved. Most existing image-inpainting methods tend to take the target image as the only input and directly r... 详细信息
来源: 评论
Analyzing Diversity in Healthcare LLM Research: A Scientometric Perspective
arXiv
收藏 引用
arXiv 2024年
作者: Restrepo, David Wu, Chenwei Vásquez-Venegas, Constanza Matos, João Gallifant, Jack Celi, Leo Anthony Bitterman, Danielle S. Nakayama, Luis Filipe Laboratory for Computational Physiology Massachusetts Institute of Technology CambridgeMA United States Departamento de Telematica Universidad del Cauca Cauca Popayán Colombia Department of Electrical Engineering and Computer Science University of Michigan Ann ArborMI United States Scientific Image Analysis Lab Faculty of Medicine Universidad de Chile RM Santiago Chile Department of Computer Science Faculty of Engineering Universidad de Concepción Biobio Concepción Chile Department of Biostatistics Harvard TH Chan School of Public Health BostonMA United States Department of Medicine Beth Israel Deaconess Medical Center BostonMA United States Artificial Intelligence in Medicine Program Mass General Brigham Harvard Medical School BostonMA United States Department of Ophthalmology São Paulo Federal University São Paulo São Paulo Brazil
The deployment of large language models (LLMs) in healthcare has demonstrated substantial potential for enhancing clinical decision-making, administrative efficiency, and patient outcomes. However, the underrepresenta... 详细信息
来源: 评论
Deep cellular recurrent network for efficient analysis of time-series data with spatial information
arXiv
收藏 引用
arXiv 2021年
作者: Vidyaratne, Lasitha Alam, Mahbubul Glandon, Alexander Shabalina, Anna Tennant, Christopher Iftekharuddin, Khan M. The Vision Lab in Department of Electrical and Computer Engineering Old Dominion University NorfolkVA23529 United States The Jefferson Laboratory Newport NewsVA23606 United States
Efficient processing of large-scale time series data is an intricate problem in machine learning. Conventional sensor signal processing pipelines with hand engineered feature extraction often involve huge computationa... 详细信息
来源: 评论
Survey on Deep Face Restoration: From Non-blind to Blind and Beyond
arXiv
收藏 引用
arXiv 2023年
作者: Li, Wenjie Wang, Mei Zhang, Kai Li, Juncheng Li, Xiaoming Zhang, Yuhang Gao, Guangwei Deng, Weihong Lin, Chia-Wen The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China The Computer Vision Lab ETH Zürich Zürich Switzerland The School of Communication and Information Engineering Shanghai University Shanghai China The Nanyang Technological University Singapore The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing China The Department of Electrical Engineering National Tsing Hua University Hsinchu Taiwan
Face restoration (FR) is a specialized field within image restoration that aims to recover low-quality (LQ) face images into high-quality (HQ) face images. Recent advances in deep learning technology have led to signi... 详细信息
来源: 评论
DF-DM: A foundational process model for multimodal data fusion in the artificial intelligence era
arXiv
收藏 引用
arXiv 2024年
作者: Restrepo, David Wu, Chenwei Vásquez-Venegas, Constanza Nakayama, Luis Filipe Celi, Leo Anthony López, Diego M. Laboratory for Computational Physiology Massachusetts Institute of Technology CambridgeMA United States Departamento de Telemática Universidad del Cauca Cauca Popayán Colombia Department of Electrical Engineering and Computer Science University of Michigan Ann ArborMI United States Scientific Image Analysis Lab Universidad de Chile Santiago Santiago Chile Department of Ophthalmology São Paulo Federal University São Paulo São Paulo Brazil Department of Biostatistics Harvard TH Chan School of Public Health BostonMA United States Department of Medicine Beth Israel Deaconess Medical Center BostonMA United States
In the big data era, integrating diverse data modalities poses significant challenges, particularly in complex fields like healthcare. This paper introduces a new process model for multimodal Data Fusion for Data Mini... 详细信息
来源: 评论
NTIRE 2023 Challenge on Efficient Super-Resolution: Methods and Results
NTIRE 2023 Challenge on Efficient Super-Resolution: Methods ...
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern Recognition Workshops, CVPRW 2023
作者: Li, Yawei Zhang, Yulun Timofte, Radu Van Gool, Luc Yu, Lei Li, Youwei Li, Xinpeng Jiang, Ting Wu, Qi Han, Mingyan Lin, Wenjie Jiang, Chengzhi Luo, Jinting Fan, Haoqiang Liu, Shuaicheng Wang, Yucong Cai, Minjie Li, Mingxi Zhang, Yuhang Fan, Xian-Jun Sheng, Yankai Mao, Yanyu Zhang, Nihao Wang, Qian Zheng, Mingjun Sun, Long Pan, Jinshan Dong, Jiangxin Tang, Jinhui Yang, Zhongbao Wang, Yan Pan, Erlin Cai, Qixuan Dai, Xinan Zhussip, Magauiya Kalyazin, Nikolay Vyal, Dmitry Zou, Xueyi Yan, Youliang Chung, Heaseo Zhang, Jin Yu, Gaocheng Zhang, Feng Wang, Hongbin Liao, Bohao Du, Zhibo Wu, Yu-Liang Shi, Gege Peng, Long Wang, Yang Cao, Yang Zha, Zhengjun Huang, Zhi-Kai Chen, Yi-Chung Chiang, Yuan-Chun Yang, Hao-Hsiang Chen, Wei-Ting Chang, Hua-En Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Liu, Xin Pan, Jiahao Yu, Hongyuan Yu, Weichen Ge, Lin Dong, Jiahua Zou, Yajun Wu, Zhuoyuan Han, Binnan Zhang, Xiaolin Zhang, Heng Yin, Xuanwu Zuo, Kunlong Deng, Weijian Yuan, Hongjie Lu, Zengtong Ouyang, Mingyu Ma, Wenzhuo Liu, Nian Zheng, Hanyou Zhang, Yuantong Zhang, Junxi Chen, Zhenzhong Gendy, Garas Sabor, Nabil Hou, Jingchao He, Guanghui Zhu, Yurui Wang, Xi Fu, Xueyang Zha, Zheng-Jun Yin, Daheng Liu, Mengyang Chen, Baijun Li, Ao Luo, Lei Jin, Kangjun Zhu, Ce Zhang, Xiaoming Xie, Chengxing Li, Linze Meng, Haiteng Zhang, Tianlin Li, Tianrui Zhao, Xiaole Zhang, Zhao Li, Baiang Zheng, Huan Zhao, Suiyi Gao, Yangcheng Ren, Jiahuan Hu, Kang Shi, Jingpeng Wu, Zhijian Huang, Dingjiang Zhu, Jinchen Li, Hui Xv, Qianru Liu, Tianle Weng, Shizhuang Wu, Gang Jiang, Junpeng Liu, Xianming Jiang, Junjun Zhang, Mingjian Hu, Jing Wu, Chengxu Fan, Qinrui Feng, Chengming Luo, Ziwei Hu, Shu Lyu, Siwei Wu, Xi Wang, Xin Computer Vision Lab ETH Zurich Switzerland Computer Vision Lab University of Würzburg Germany Megvii Technology China MicroBT China College of Computer Science and Electronic Engineering Hunan University China Attrsense Xian University of Posts and Telecommunications Xi'an China National Engineering Laboratory for Cyber Event Warning and Control Technologies China Nanjing University of Science and Technology China Nankai University China University of Electronic Science and Technology of China China Tianjin University China Noah's Ark Lab Huawei Technologies McMaster University Canada Espresomedia Korea Republic of AntGroup China University of Science and Technology of China China Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan Graduate Institute of Electronics Engineering National Taiwan University Taiwan ServiceNow United States China Mobile Research Institute China Chongqing University of Technology China Multimedia Department Xiaomi Inc. China Institute of Automation Chinese Academy of Sciences China Shenyang Institute of Automation Chinese Academy of Sciences China School of Information and Communication Engineering Communication University of China China Smart Classroom Division Ruijie Networks Co. Ltd. China School of Remote Sensing and Information Engineering Wuhan University China Micro-Nano Electronics Department Shanghai Jiao Tong University Shanghai200240 China Electrical Engineering Department Faculty of Engineering Assiut University Assiut71516 Egypt Southeast University China University of Electronic Science and Technology of China Chengdu China Chongqing University of Posts and Telecommunications Chongqing China Information Technology Co. Ltd Hangzhou China Southwest Jiaotong University China National Space Science Center Chinese Academy of Science China Hefei University of Technology Hefei China Anhui University China Fried Ric
This paper reviews the NTIRE 2023 challenge on efficient single-image super-resolution with a focus on the proposed solutions and results. The aim of this challenge is to devise a network that reduces one or several a... 详细信息
来源: 评论
A Comprehensive Survey for Hyperspectral image Classification: The Evolution from Conventional to Transformers and Mamba Models
arXiv
收藏 引用
arXiv 2024年
作者: Ahmad, Muhammad Distefano, Salvatore Khan, Adil Mehmood Mazzara, Manuel Li, Chenyu Li, Hao Aryal, Jagannath Ding, Yao Vivone, Gemine Hong, Danfeng Department of Computer Science National University of Computer and Emerging Sciences Islamabad Pakistan Dipartimento di Matematica e Informatica-MIFT University of Messina Messina98121 Italy School of Computer Science University of Hull HullHU6 7RX United Kingdom Institute of Software Development and Engineering Innopolis University Innopolis420500 Russia Aerospace Information Research Institute Chinese Academy of Sciences Beijing100094 China Big Geospatial Data Management Technical University of Munich Munich85521 Germany Department of Infrastructure Engineering University of Melbourne ParkvilleVIC Australia Intelligent Control Laboratory PLA Rocket Force University of Engineering Xi’an710025 China Institute of Methodologies for Environmental Analysis National Research Council Tito85050 Italy School of Electronic Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing100049 China
Hyperspectral image Classification (HSC) presents significant challenges owing to the high dimensionality and intricate nature of Hyperspectral (HS) data. While traditional Machine Learning (TML) approaches have demon... 详细信息
来源: 评论