咨询与建议

限定检索结果

文献类型

  • 676 篇 会议
  • 230 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 913 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 421 篇 工学
    • 258 篇 计算机科学与技术...
    • 223 篇 软件工程
    • 132 篇 光学工程
    • 102 篇 电气工程
    • 100 篇 生物医学工程(可授...
    • 83 篇 信息与通信工程
    • 66 篇 电子科学与技术(可...
    • 66 篇 生物工程
    • 37 篇 控制科学与工程
    • 32 篇 机械工程
    • 30 篇 仪器科学与技术
    • 18 篇 化学工程与技术
    • 13 篇 土木工程
    • 12 篇 材料科学与工程(可...
    • 11 篇 建筑学
    • 9 篇 安全科学与工程
    • 8 篇 航空宇航科学与技...
  • 277 篇 理学
    • 133 篇 物理学
    • 125 篇 数学
    • 79 篇 生物学
    • 55 篇 统计学(可授理学、...
    • 19 篇 化学
    • 10 篇 系统科学
  • 74 篇 管理学
    • 41 篇 管理科学与工程(可...
    • 37 篇 图书情报与档案管...
    • 15 篇 工商管理
  • 67 篇 医学
    • 61 篇 临床医学
    • 48 篇 基础医学(可授医学...
    • 32 篇 药学(可授医学、理...
    • 9 篇 公共卫生与预防医...
  • 9 篇 艺术学
  • 7 篇 农学
  • 5 篇 教育学
  • 4 篇 法学
  • 1 篇 经济学

主题

  • 137 篇 computer vision
  • 117 篇 laboratories
  • 106 篇 image segmentati...
  • 84 篇 image analysis
  • 63 篇 image processing
  • 54 篇 feature extracti...
  • 53 篇 magnetic resonan...
  • 53 篇 shape
  • 48 篇 cameras
  • 47 篇 pixel
  • 45 篇 image reconstruc...
  • 38 篇 humans
  • 38 篇 layout
  • 35 篇 image edge detec...
  • 34 篇 machine vision
  • 34 篇 biomedical imagi...
  • 33 篇 data mining
  • 33 篇 algorithm design...
  • 32 篇 robustness
  • 32 篇 principal compon...

机构

  • 19 篇 control and inte...
  • 12 篇 department of el...
  • 10 篇 computer vision ...
  • 10 篇 remote sensing s...
  • 10 篇 computer vision ...
  • 10 篇 image analysis a...
  • 10 篇 remote sensing s...
  • 9 篇 radiology image ...
  • 9 篇 department of ra...
  • 9 篇 department of ra...
  • 9 篇 computational in...
  • 8 篇 remote sensing s...
  • 8 篇 centre for medic...
  • 8 篇 department of qu...
  • 8 篇 image analysis l...
  • 8 篇 computer vision ...
  • 8 篇 department of el...
  • 8 篇 laboratory for v...
  • 7 篇 computer vision ...
  • 7 篇 computer vision ...

作者

  • 29 篇 hamid soltanian-...
  • 20 篇 chein-i chang
  • 18 篇 a.c. bovik
  • 17 篇 soltanian-zadeh ...
  • 15 篇 s. mitra
  • 14 篇 h. knutsson
  • 14 篇 aly a. farag
  • 13 篇 timofte radu
  • 13 篇 a.a. farag
  • 13 篇 chang chein-i
  • 12 篇 m.m. trivedi
  • 12 篇 h. soltanian-zad...
  • 11 篇 chang chein-i.
  • 9 篇 bakas spyridon
  • 9 篇 j. goutsias
  • 9 篇 felsberg michael
  • 9 篇 e.j. delp
  • 8 篇 kofler florian
  • 8 篇 d. poussart
  • 8 篇 menze bjoern

语言

  • 875 篇 英文
  • 37 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Image Analysis Laboratory Department of Electrical and Computer Engineering"
913 条 记 录,以下是141-150 订阅
排序:
Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical Segmentation of the Circle of Willis for CTA and MRA
arXiv
收藏 引用
arXiv 2023年
作者: Yang, Kaiyuan Musio, Fabio Ma, Yihui Juchler, Norman Paetzold, Johannes C. Al-Maskari, Rami Höher, Luciano Li, Hongwei Bran Hamamci, Ibrahim Ethem Sekuboyina, Anjany Shit, Suprosanna Huang, Houjing Prabhakar, Chinmay de la Rosa, Ezequiel Waldmannstetter, Diana Kofler, Florian Navarro, Fernando Menten, Martin Ezhov, Ivan Rueckert, Daniel Vos, Iris Ruigrok, Ynte Velthuis, Birgitta Kuijf, Hugo Hämmerli, Julien Wurster, Catherine Bijlenga, Philippe Westphal, Laura Bisschop, Jeroen Colombo, Elisa Baazaoui, Hakim Makmur, Andrew Hallinan, James Wiestler, Bene Kirschke, Jan S. Wiest, Roland Montagnon, Emmanuel Letourneau-Guillon, Laurent Galdran, Adrian Galati, Francesco Falcetta, Daniele Zuluaga, Maria A. Lin, Chaolong Zhao, Haoran Zhang, Zehan Ra, Sinyoung Hwang, Jongyun Park, Hyunjin Chen, Junqiang Wodzinski, Marek Müller, Henning Shi, Pengcheng Liu, Wei Ma, Ting Yalçin, Cansu Hamadache, Rachika E. Salvi, Joaquim Llado, Xavier Estrada, Uma Maria Lal-Trehan Abramova, Valeriia Giancardo, Luca Oliver, Arnau Liu, Jialu Huang, Haibin Cui, Yue Lin, Zehang Liu, Yusheng Zhu, Shunzhi Patel, Tatsat R. Tutino, Vincent M. Orouskhani, Maysam Wang, Huayu Mossa-Basha, Mahmud Zhu, Chengcheng Rokuss, Maximilian R. Kirchhoff, Yannick Disch, Nico Holzschuh, Julius Isensee, Fabian Maier-Hein, Klaus Sato, Yuki Hirsch, Sven Wegener, Susanne Menze, Bjoern Department of Quantitative Biomedicine University of Zurich Zurich Switzerland Center for Computational Health Zurich University of Applied Sciences Zurich Switzerland Department of Neuroradiology University Hospital of Zurich Zurich Switzerland Department of Neurosurgery Zhongnan Hospital of Wuhan University Wuhan China Department of Computing Imperial College London London United Kingdom Helmholtz Center Munich Germany Athinoula A. Martinos Center for Biomedical Imaging Harvard Medical School Boston United States School of Medicine Technical University of Munich Munich Germany Department of Informatics Technical University of Munich Munich Germany Helmholtz AI Helmholtz Munich Munich Germany Image Sciences Institute UMC Utrecht Utrecht Netherlands Department of Neurology UMC Utrecht Utrecht Netherlands Department of Radiology UMC Utrecht Utrecht Netherlands Department of Clinical Neurosciences Division of Neurosurgery Geneva University Hospitals Geneva Switzerland Department of Neurology University Hospital of Zurich Zurich Switzerland Department of Physiology University of Toronto Toronto Canada Department of Neurosurgery University Hospital of Zurich Zurich Switzerland Department of Diagnostic Imaging National University Hospital Singapore Department of Diagnostic and Interventional Neuroradiology University Hospital Berne University of Berne Berne Switzerland Montreal Canada Universitat Pompeu Fabra Barcelona Spain EURECOM Biot France Institute of Medical Technology Peking University Health Science Center Beijing China Hangzhou Genlight Medtech Co. Ltd. Hangzhou China Department of Artificial Intelligence Sungkyunkwan University Seoul Korea Republic of Department of Electrical and Computer Engineering Sungkyunkwan University Seoul Korea Republic of Shanghai MediWorks Precision Instruments Co. Ltd. Shanghai China Institute of Informatics HES-SO Valais-Wallis Switzerland Department of Measurement and Electronics AGH University
The Circle of Willis (CoW) is an important network of arteries connecting major circulations of the brain. Its vascular architecture is believed to affect the risk, severity, and clinical outcome of serious neuro-vasc... 详细信息
来源: 评论
Hyperspectral image classification with attention aided CNNs
arXiv
收藏 引用
arXiv 2020年
作者: Hang, Renlong Li, Zhu Liu, Qingshan Ghamisi, Pedram Bhattacharyya, Shuvra S. School of Automation Nanjing University of Information Science and Technology Nanjing210044 China Department of Computer Science and Electrical Engineering University of Missouri Kansas CityMO64110 United States Jiangsu Key Laboratory of Big Data Analysis Technology School of Automation Nanjing University of Information Science and Technology Nanjing210044 China Exploration FreibergD-09599 Germany Department of Electrical and Computer Engineering University of Maryland College ParkMD20742 United States
Convolutional neural networks (CNNs) have been widely used for hyperspectral image classification. As a common process, small cubes are firstly cropped from the hyperspectral image and then fed into CNNs to extract sp... 详细信息
来源: 评论
Graph Modularity and Randomness Measures : A Comparative Study
Graph Modularity and Randomness Measures : A Comparative Stu...
收藏 引用
2018 IEEE Southwest Symposium on image analysis and Interpretation, SSIAI 2018
作者: Vergara, Victor M. Yu, Qingbao Calhoun, Vince D. Medical Image Analysis Laboratory Mind Research Network AlbuquerqueNM United States Department of Electrical and Computer Engineering University of New Mexico AlbuquerqueNM United States
The human brain connectome exhibits a specific structure diagram that is understood to not be wired for randomness. However, aberrant connectivity has been detected and moreover linked to multiple neuropsychiatric and... 详细信息
来源: 评论
Evaluation of techniques for automated classification and artery quantification of the circle of Willis on TOF-MRA images: The CROWN challenge
收藏 引用
Medical image analysis 2025年 105卷
作者: Iris N. Vos Ynte M. Ruigrok Edwin Bennink Mireille R.E. Velthuis Barbara Paic Maud E.H. Ophelders Myrthe A.D. Buser Bas H.M. van der Velden Chen Geng Matthieu Coupet Félix Dumais Adrian Galdran Junyi Zhang Wei Liu Ting Ma Madhu S. Nair Mathieu Naudin Preena K.P. Keerthi A.S. Pillai Pengcheng Shi Hugo J. Kuijf Image Sciences Institute UMC Utrecht Utrecht The Netherlands Department of Neurology and Neurosurgery University Medical Center Utrecht Utrecht The Netherlands Department of Radiology University Medical Center Utrecht Utrecht The Netherlands Princess Máxima Center for Pediatric Oncology 3584 CS Utrecht The Netherlands Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences Suzhou China Jinan Guoke Medical Technology Development Co. Ltd Jinan China XLIM Laboratory University of Poitiers UMR CNRS 7252 Poitiers France I3M Common Laboratory CNRS-Siemens University and Hospital of Poitiers Poitiers France Department of Computer Sciences Université de Sherbrooke Sherbrooke Canada Universitat Pompeu Fabra Barcelona Spain School of Electronic & Information Engineering Suzhou University of Science and Technology Suzhou China Electronic & Information Engineering School Harbin Institute of Technology (Shenzhen) Shenzhen China Artificial Intelligence & Computer Vision Lab Department of Computer Science Cochin University of Science and Technology (CUSAT) Kochi 682022 Kerala India University Hospital CHU Poitiers 86000 France DACTIM-MIS/LMA Laboratory University of Poitiers UMR CNRS 7348 Poitiers 86000 France
Assessing risk factors for intracranial aneurysm (IA) development on images is crucial for early detection of high-risk cases. IAs often form at bifurcations within the circle of Willis (CoW), but manual assessment of... 详细信息
来源: 评论
AIM 2020 Challenge on image Extreme Inpainting  16th
AIM 2020 Challenge on Image Extreme Inpainting
收藏 引用
Workshops held at the 16th European Conference on computer vision, ECCV 2020
作者: Ntavelis, Evangelos Romero, Andrés Bigdeli, Siavash Timofte, Radu Hui, Zheng Wang, Xiumei Gao, Xinbo Shin, Chajin Kim, Taeoh Son, Hanbin Lee, Sangyoun Li, Chao Li, Fu He, Dongliang Wen, Shilei Ding, Errui Bai, Mengmeng Li, Shuchen Zeng, Yu Lin, Zhe Yang, Jimei Zhang, Jianming Shechtman, Eli Lu, Huchuan Zeng, Weijian Ni, Haopeng Cai, Yiyang Li, Chenghua Xu, Dejia Wu, Haoning Han, Yu Nadim, Uddin S. M. Jang, Hae Woong Ahmed, Soikat Hasan Yoon, Jungmin Jung, Yong Ju Li, Chu-Tak Liu, Zhi-Song Wang, Li-Wen Siu, Wan-Chi Lun, Daniel P. K. Suin, Maitreya Purohit, Kuldeep Rajagopalan, A.N. Narang, Pratik Mandal, Murari Chauhan, Pranjal Singh Computer Vision Lab ETH Zürich Zürich Switzerland CSEM Neuchâtel Switzerland School of Electronic Engineering Xidian University Xi’an China Image and Video Pattern Recognition Laboratory School of Electrical and Electronic Engineering Yonsei University Seoul Korea Republic of Baidu Inc. Beijing China Beijing China Dalian University of Technology Dalian China Adobe San Jose United States Rensselaer Polytechnic Institute Troy United States Peking University Beijing China Lab Gachon University Seongnam Korea Republic of Centre for Multimedia Signal Processing Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong China Indian Institute of Technology Madras Chennai India BITS Pilani Pilani India MNIT Jaipur Jaipur India
This paper reviews the AIM 2020 challenge on extreme image inpainting. This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semanti... 详细信息
来源: 评论
THREE DIMENSIONAL BLIND image DECONVOLUTION FOR FLUORESCENCE MICROSCOPY USING GENERATIVE ADVERSARIAL NETWORKS
arXiv
收藏 引用
arXiv 2019年
作者: Lee, Soonam Han, Shuo Salama, Paul Dunn, Kenneth W. Delp, Edward J. Video and Image Processing Laboratory School of Electrical and Computer Engineering Purdue University West Lafayette IN United States Department of Electrical and Computer Engineering Indiana University Indianapolis IN United States Division of Nephrology School of Medicine Indiana University
Due to image blurring image deconvolution is often used for studying biological structures in fluorescence microscopy. Fluorescence microscopy image volumes inherently suffer from intensity inhomogeneity, blur, and ar... 详细信息
来源: 评论
Using image-extracted features to determine heart rate and blink duration for driver sleepiness detection
arXiv
收藏 引用
arXiv 2019年
作者: Darzi, Erfan Mohammadie-Zand, Armin Soltanian-Zadeh, Hamid School of Electrical and Computer Engineering College of Engineering University of Tehran Tehran Iran Department of Electerical Engineering Amirkabir University of Technology Tehran Iran Medical Image Analysis Laboratory Henry Ford Health System Detroit MI United States
Heart rate and blink duration are two vital physiological signals which give information about cardiac activity and consciousness. Monitoring these two signals is crucial for various applications such as driver drowsi... 详细信息
来源: 评论
Synthesizing MR image Contrast Enhancement Using 3D High-resolution ConvNets
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Chao Raymond, Catalina Speier, William Jin, Xinyu Cloughesy, Timothy F. Enzmann, Dieter Ellingson, Benjamin M. Arnold, Corey W. Information Science and Electrical Engineering Department Zhejiang Univeristy Hangzhou310027 China Department of Radiological Sciences David Geffen School of Medicine The University of California Los Angeles United States Department of Neurology David Geffen School of Medicine The University of California Los Angeles United States UCLA Brain Tumor Imaging Laboratory Center for Computer Vision and Imaging Biomarkers Department of Radiological Sciences David Geffen School of Medicine University of California Los Angeles Los Angeles United States Computational Diagnostics Lab The Department of Radiological Sciences The Department of Pathology and Laboratory Medicine The Department of Bioengineering The University of California Los Angeles 924 Westwood Blvd Suite 600 CA90024 United States
Objective: Gadolinium-based contrast agents (GBCAs) have been widely used to better visualize disease in brain magnetic resonance imaging (MRI). However, gadolinium deposition within the brain and body has raised safe... 详细信息
来源: 评论
Jointly learning structured analysis discriminative dictionary and analysis multiclass classifier
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhao Jiang, Weiming Qin, Jie Zhang, Li Li, Fanzhang Zhang, Min Yan, Shuicheng School of Computer Science and Technology Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China Computer Vision Laboratory ETH Zürich Zürich8092 Switzerland Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore
In this paper, we propose an analysis mechanism based structured analysis Discriminative Dictionary Learning (ADDL) framework. ADDL seamlessly integrates the analysis discriminative dictionary learning, analysis repre... 详细信息
来源: 评论
A review of uncertainty quantification in deep learning: Techniques, applications and challenges
arXiv
收藏 引用
arXiv 2020年
作者: Abdar, Moloud Pourpanah, Farhad Hussain, Sadiq Rezazadegan, Dana Liu, Li Ghavamzadeh, Mohammad Fieguth, Paul Cao, Xiaochun Khosravi, Abbas Rajendra Acharya, U. Makarenkov, Vladimir Nahavandi, Saeid Deakin University Australia College of Mathematics and Statistics Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Shenzhen518060 China Dibrugarh University Dibrugarh India Department of Computer Science and Software Engineering Swinburne University of Technology Melbourne Australia Center for Machine Vision and Signal Analysis University of Oulu Oulu Finland Google research United States Department of Systems Design Engineering University of Waterloo Waterloo Canada State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Beijing China Department of Electronics and Computer Engineering Ngee Ann Polytechnic Clementi Singapore Department of Computer Science University of Quebec in Montreal MontrealQC Canada
—Uncertainty quantification (UQ) plays a pivotal role in the reduction of uncertainties during both optimization and decision making, applied to solve a variety of real-world applications in science and engineering. ... 详细信息
来源: 评论