咨询与建议

限定检索结果

文献类型

  • 615 篇 会议
  • 165 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 783 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 348 篇 工学
    • 190 篇 计算机科学与技术...
    • 166 篇 软件工程
    • 88 篇 电气工程
    • 84 篇 光学工程
    • 83 篇 信息与通信工程
    • 62 篇 生物医学工程(可授...
    • 60 篇 电子科学与技术(可...
    • 38 篇 生物工程
    • 36 篇 控制科学与工程
    • 27 篇 仪器科学与技术
    • 22 篇 机械工程
    • 14 篇 化学工程与技术
    • 10 篇 土木工程
    • 10 篇 航空宇航科学与技...
    • 7 篇 材料科学与工程(可...
    • 7 篇 动力工程及工程热...
    • 7 篇 建筑学
  • 208 篇 理学
    • 106 篇 数学
    • 101 篇 物理学
    • 45 篇 生物学
    • 38 篇 统计学(可授理学、...
    • 16 篇 化学
    • 11 篇 系统科学
  • 57 篇 管理学
    • 34 篇 图书情报与档案管...
    • 26 篇 管理科学与工程(可...
  • 40 篇 医学
    • 38 篇 临床医学
    • 27 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
    • 7 篇 医学技术(可授医学...
  • 10 篇 艺术学
    • 10 篇 设计学(可授艺术学...
  • 6 篇 法学
  • 6 篇 农学
  • 1 篇 军事学

主题

  • 119 篇 image processing
  • 81 篇 laboratories
  • 76 篇 image segmentati...
  • 66 篇 image coding
  • 56 篇 computer vision
  • 52 篇 shape
  • 50 篇 signal processin...
  • 48 篇 pixel
  • 45 篇 image analysis
  • 44 篇 feature extracti...
  • 35 篇 image reconstruc...
  • 33 篇 remote sensing
  • 30 篇 cameras
  • 29 篇 magnetic resonan...
  • 29 篇 layout
  • 28 篇 biomedical imagi...
  • 27 篇 image edge detec...
  • 26 篇 neural networks
  • 26 篇 decoding
  • 26 篇 clustering algor...

机构

  • 43 篇 video and image ...
  • 21 篇 signal and image...
  • 19 篇 control and inte...
  • 16 篇 remote sensing s...
  • 15 篇 computer vision ...
  • 15 篇 remote sensing s...
  • 14 篇 department of el...
  • 14 篇 video and image ...
  • 13 篇 remote sensing s...
  • 13 篇 computer vision ...
  • 9 篇 department of ra...
  • 9 篇 remote sensing s...
  • 9 篇 electrical and c...
  • 8 篇 computer vision ...
  • 7 篇 department of ra...
  • 6 篇 image analysis l...
  • 6 篇 control and inte...
  • 5 篇 image processing...
  • 5 篇 image analysis l...
  • 5 篇 radiology image ...

作者

  • 49 篇 edward j. delp
  • 47 篇 e.j. delp
  • 34 篇 chein-i chang
  • 24 篇 chang chein-i
  • 21 篇 hamid soltanian-...
  • 17 篇 aly a. farag
  • 15 篇 chang chein-i.
  • 15 篇 gardner wa
  • 14 篇 s. mitra
  • 14 篇 a.a. farag
  • 14 篇 majdi mansouri
  • 13 篇 soltanian-zadeh ...
  • 12 篇 s.k. mitra
  • 12 篇 paul salama
  • 11 篇 mansouri majdi
  • 11 篇 rajagopalan a.n.
  • 9 篇 kais bouzrara
  • 9 篇 p. salama
  • 9 篇 delp edward j.
  • 9 篇 wu chao-cheng

语言

  • 757 篇 英文
  • 21 篇 其他
  • 5 篇 中文
  • 1 篇 阿拉伯文
检索条件"机构=Computer Vision and Image Processing Laboratory Electrical and Computer Engineering"
783 条 记 录,以下是61-70 订阅
排序:
Learning Probabilistic Coordinate Fields for Robust Correspondences
arXiv
收藏 引用
arXiv 2023年
作者: Zhao, Weiyue Lu, Hao Ye, Xinyi Cao, Zhiguo Li, Xin Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China The Lane Department of Computer Science and Electrical Engineering West Virginia University MorgantownWV26506-6109 United States
We introduce Probabilistic Coordinate Fields (PCFs), a novel geometric-invariant coordinate representation for image correspondence problems. In contrast to standard Cartesian coordinates, PCFs encode coordinates in c... 详细信息
来源: 评论
A2B: Anchor to Barycentric Coordinate for Robust Correspondence
arXiv
收藏 引用
arXiv 2023年
作者: Zhao, Weiyue Lu, Hao Cao, Zhiguo Li, Xin The Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China Lane Department of Computer Science and Electrical Engineering West Virginia University Commonwealth of Virginia Morgantown 15461 United States
There is a long-standing problem of repeated patterns in correspondence problems, where mismatches frequently occur because of inherent ambiguity. The unique position information associated with repeated patterns make...
来源: 评论
CodeEnhance: A Codebook-Driven Approach for Low-Light image Enhancement
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Xu Hou, XianXu Lai, Zhihui Zhou, Jie Zhang, Ya-Nan Pedrycz, Witold Shen, Linlin The Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China School of AI and Advanced Computing Xi’an Jiaotong-Liverpool University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Shenzhen518060 China The Department of Electrical & Computer Engineering University of Alberta University of Alberta Canada
Low-light image enhancement (LLIE) aims to improve low-illumination images. However, existing methods face two challenges: (1) uncertainty in restoration from diverse brightness degradations;(2) loss of texture and co... 详细信息
来源: 评论
Terahertz compressive imaging: understanding and improvement by a better strategy for data selection
Terahertz compressive imaging: understanding and improvement...
收藏 引用
作者: Xing, Chungui Qi, Feng Liu, Zhaoyang Wang, Yelong Guo, Shuxu State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun China Shenyang Institute of Automation Chinese Academy of Sciences Shenyang China Key Laboratory of Opto-Electronic Information Processing Chinese Academy of Sciences Shenyang China Key Lab of Image Understanding and Computer Vision Shenyang China
Compressive sensing (CS) is a novel sampling modality, which indicates the signals can be sampled at a rate much below the Nyquist sampling rate. CS has increasing interest recently due to high demand of rapid, effici... 详细信息
来源: 评论
Lens-to-Lens Bokeh Effect Transformation. NTIRE 2023 Challenge Report
Lens-to-Lens Bokeh Effect Transformation. NTIRE 2023 Challen...
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern Recognition Workshops, CVPRW 2023
作者: Conde, Marcos V. Kolmet, Manuel Seizinger, Tim Bishop, Tom E. Timofte, Radu Kong, Xiangyu Zhang, Dafeng Wu, Jinlong Wang, Fan Peng, Juewen Pan, Zhiyu Liu, Chengxin Luo, Xianrui Sun, Huiqiang Shen, Liao Cao, Zhiguo Xian, Ke Liu, Chaowei Chen, Zigeng Yang, Xingyi Liu, Songhua Jing, Yongcheng Mi, Michael Bi Wang, Xinchao Yang, Zhihao Lian, Wenyi Lai, Siyuan Zhang, Haichuan Hoang, Trung Yazdani, Amirsaeed Monga, Vishal Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Zhao, Yuxuan Chen, Baoliang Xu, Yiqing Niu, Jixiang Computer Vision Lab CAIDAS IFI University of Würzburg Germany Glass Imaging Inc. China Huazhong University of Science and Technology China Nanyang Technological University Singapore National University of Singapore Singapore University of Sydney Australia Huawei Uppsala University Sweden Department of Electrical Engineering Pennsylvania State University United States Department of Information Technology Uppsala University Sweden Key Laboratory of Intelligent Perception and Image Understanding of the Ministry of Education Xidian University Xi'an China North China University of Technology China
We present the new Bokeh Effect Transformation Dataset (BETD), and review the proposed solutions for this novel task at the NTIRE 2023 Bokeh Effect Transformation Challenge. Recent advancements of mobile photography a... 详细信息
来源: 评论
Effects of spatially dense adrenergic stimulation to rotor behaviour in simulated atrial sheets
收藏 引用
computers in Biology and Medicine 2024年 182卷 109195-109195页
作者: Magtibay, Karl Massé, Stéphane Nanthakumar, Kumaraswamy Umapathy, Karthikeyan Biomedical Signal and Image Processing Laboratory Department of Electrical Computer and Biomedical Engineering Faculty of Engineering and Architectural Science Toronto Metropolitan University 350 Victoria St TorontoONM5B 2K3 Canada Toby Hull Cardiac Fibrillation Management Toronto General Hospital University Health Network 200 Elizabeth Street TorontoONM5G 2C4 Canada
Sympathetic hyperactivity via spatially dense adrenergic stimulation may create pro-arrhythmic substrates even without structural remodelling. However, the effect of sympathetic hyperactivity on arrhythmic activity, s... 详细信息
来源: 评论
Transclaw U-Net: Claw U-Net With Transformers for Medical image Segmentation
Transclaw U-Net: Claw U-Net With Transformers for Medical Im...
收藏 引用
IEEE International Conference on Information Communication and Signal processing (ICICSP)
作者: Chang Yao Menghan Hu Qingli Li Guangtao Zhai Xiao-Ping Zhang Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University Shanghai China Institute of Image Communication and Information Processing Shanghai Jiao Tong University Shanghai China Department of Electrical Computer and Biomedical Engineering Ryerson University Toronto Canada
In medical image analysis, the long-range spatial features are often not accurately obtained by the traditional convolutional neural networks. Hence, we propose a TransClaw U-Net network structure. The transformer par... 详细信息
来源: 评论
NTIRE 2023 image Shadow Removal Challenge Report
NTIRE 2023 Image Shadow Removal Challenge Report
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern Recognition Workshops, CVPRW 2023
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Timofte, Radu Cui, Shuhao Huang, Junshi Tian, Shuman Fan, Mingyuan Zhang, Jiaqi Zhu, Li Wei, Xiaoming Wei, Xiaolin Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Dong, Xiaoyi Zhang, Xi Sheryl Li, Chenghua Leng, Cong Yeo, Woon-Ha Oh, Wang-Taek Lee, Yeo-Reum Ryu, Han-Cheol Luo, Jinting Jiang, Chengzhi Han, Mingyan Wu, Qi Lin, Wenjie Yu, Lei Li, Xinpeng Jiang, Ting Fan, Haoqiang Liu, Shuaicheng Xu, Shuning Song, Binbin Chen, Xiangyu Zhang, Shile Zhou, Jiantao Zhang, Zhao Zhao, Suiyi Zheng, Huan Gao, Yangcheng Wei, Yanyan Wang, Bo Ren, Jiahuan Luo, Yan Kondo, Yuki Miyata, Riku Yasue, Fuma Naruki, Taito Ukita, Norimichi Chang, Hua-En Yang, Hao-Hsiang Chen, Yi-Chung Chiang, Yuan-Chun Huang, Zhi-Kai Chen, Wei-Ting Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Xianwei, Li Fu, Huiyuan Liu, Chunlin Ma, Huadong Fu, Binglan He, Huiming Wang, Mengjia She, Wenxuan Liu, Yu Nathan, Sabari Kansal, Priya Zhang, Zhongjian Yang, Huabin Wang, Yan Zhang, Yanru Phutke, Shruti S. Kulkarni, Ashutosh Khan, Md Raqib Murala, Subrahmanyam Vipparthi, Santosh Kumar Ye, Heng Liu, Zixi Yang, Xingyi Liu, Songhua Wu, Yinwei Jing, Yongcheng Yu, Qianhao Zheng, Naishan Huang, Jie Long, Yuhang Yao, Mingde Zhao, Feng Zhao, Bowen Ye, Nan Shen, Ning Cao, Yanpeng Xiong, Tong Xia, Weiran Li, Dingwen Xia, Shuchen Computer Vision Lab Ifi Caidas University of Würzburg Germany Computer Vision Lab Eth Zürich Switzerland Meituan Group China Department of Information Technology Uppsala University Sweden Institute of Automation Chinese Academy of Sciences Beijing China Nanjing China Maicro Nanjing China Department of Artificial Intelligence Convergence Sahmyook University Seoul Korea Republic of Megvii Technology China University of Electronic Science and Technology of China China University of Macau China China Toyota Technological Institute Japan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Beijing University of Post and Teleconmunication Beijing China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education China Couger Inc. Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar Punjab Rupnagar India Research Institute Singapore National University of Singapore Singapore Research Institute Singapore University of Sydney Australia Brain-Inspired Vision Laboratory Information Science and Technology Institution University of Science and Technology of China China State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou310027 China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou310027 China South China University of Technology China
This work reviews the results of the NTIRE 2023 Challenge on image Shadow Removal. The described set of solutions were proposed for a novel dataset, which captures a wide range of object-light interactions. It consist... 详细信息
来源: 评论
Intelligent Reflecting Surface OFDM Communication with Deep Neural Prior
Intelligent Reflecting Surface OFDM Communication with Deep ...
收藏 引用
IEEE International Conference on Communications (ICC)
作者: Tomer Fireaizen Gal Metzer Dan Ben-David Yair Moshe Israel Cohen Emil Bjö rnson Signal and Image Processing Laboratory (SIPL) Faculty of Electrical &amp Computer Engineering Technion &#x2013 Israel Institute of Technology Haifa Israel Faculty of Engineering Tel Aviv University Tel Aviv Israel Dept. of Electrical Engineering (ISY) Link&#x00F6 ping University and KTH Royal Insitute of Technology Sweden
An Intelligent Reflecting Surface (IRS) is an emerging technology for improving the data rate over wireless channels by controlling the underlying channel. In this paper, we describe a novel solution for IRS configura... 详细信息
来源: 评论
T-TIME: Test-Time Information Maximization Ensemble for Plug-and-Play BCIs
arXiv
收藏 引用
arXiv 2024年
作者: Li, Siyang Wang, Ziwei Luo, Hanbin Ding, Lieyun Wu, Dongrui Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen China Henan Key Laboratory of Brain Science and Brain Computer Interface Technology School of Electrical and Information Engineering Zhengzhou University China School of Civil and Hydraulic Engineering Huazhong University of Science and Technology Wuhan430074 China
Objective: An electroencephalogram (EEG)-based brain-computer interface (BCI) enables direct communication between the human brain and a computer. Due to individual differences and non-stationarity of EEG signals, suc... 详细信息
来源: 评论