咨询与建议

限定检索结果

文献类型

  • 46 篇 期刊文献
  • 37 篇 会议

馆藏范围

  • 83 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 48 篇 工学
    • 35 篇 计算机科学与技术...
    • 32 篇 软件工程
    • 21 篇 光学工程
    • 13 篇 生物工程
    • 12 篇 生物医学工程(可授...
    • 10 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 6 篇 电气工程
    • 4 篇 机械工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 土木工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
  • 36 篇 理学
    • 19 篇 物理学
    • 14 篇 数学
    • 14 篇 生物学
    • 6 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 8 篇 管理学
    • 6 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 3 篇 医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 3 篇 药学(可授医学、理...
  • 2 篇 农学

主题

  • 6 篇 computer vision
  • 5 篇 three-dimensiona...
  • 5 篇 shape
  • 4 篇 image enhancemen...
  • 4 篇 image segmentati...
  • 3 篇 transforms
  • 3 篇 histograms
  • 3 篇 solid modeling
  • 3 篇 geometry
  • 2 篇 deep learning
  • 2 篇 generative adver...
  • 2 篇 adaptive equaliz...
  • 2 篇 face recognition
  • 2 篇 lighting
  • 2 篇 visualization
  • 2 篇 genetic algorith...
  • 2 篇 feature extracti...
  • 2 篇 estimation
  • 2 篇 biological syste...
  • 2 篇 image reconstruc...

机构

  • 4 篇 max planck eth c...
  • 4 篇 state key lab on...
  • 4 篇 centre for medic...
  • 4 篇 heidelberg divis...
  • 4 篇 fraunhofer mevis...
  • 4 篇 ihu strasbourg s...
  • 4 篇 department of co...
  • 4 篇 faculty of mathe...
  • 3 篇 electrical engin...
  • 3 篇 shanghai jiao to...
  • 3 篇 computer vision ...
  • 3 篇 university of pe...
  • 3 篇 department of co...
  • 3 篇 vector institute...
  • 3 篇 south china univ...
  • 3 篇 erlangen-nürnber...
  • 3 篇 radboud institut...
  • 3 篇 department of bi...
  • 3 篇 heidelberg divis...
  • 3 篇 general robotics...

作者

  • 5 篇 bakas spyridon
  • 5 篇 timofte radu
  • 5 篇 geiger andreas
  • 4 篇 kozubek michal
  • 4 篇 galdran adrian
  • 4 篇 zelensky a.
  • 4 篇 ma xiaojian
  • 4 篇 reinke annika
  • 4 篇 godau patrick
  • 4 篇 kofler florian
  • 4 篇 eisenmann matthi...
  • 4 篇 sun fuchun
  • 4 篇 petersen jens
  • 4 篇 menze bjoern
  • 4 篇 antonelli michel...
  • 4 篇 voronin v.
  • 3 篇 kreshuk anna
  • 3 篇 li cheng
  • 3 篇 rajpoot nasir
  • 3 篇 haase robert

语言

  • 81 篇 英文
  • 2 篇 其他
检索条件"机构=Computer Vision and Intelligent Systems Lab"
83 条 记 录,以下是21-30 订阅
排序:
A Deep Learning-Based Approach for Defect Detection and Removing on Archival Photos  18
A Deep Learning-Based Approach for Defect Detection and Remo...
收藏 引用
18th Image Processing: Algorithms and systems Conference, IPAS 2020
作者: Sizyakin, R. Voronin, V. Gapon, N. Zelensky, A. Pižurica, A. Department Telecommunications and Information Processing IPITELIN-imec Ghent University Ghent Belgium Moscow State University of Technology "STANKIN" Moscow Russia Lab. "Mathematical methods of image processing and intelligent computer vision systems" Don State Technical University Rostov-on-Don Russia
Many archival photos are unique, existed only in a single copy. Some of them are damaged due to improper archiving (e.g. affected by direct sunlight, humidity, insects, etc.) or have physical damage resulting in the a... 详细信息
来源: 评论
Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image
arXiv
收藏 引用
arXiv 2020年
作者: Paschalidou, Despoina van Gool, Luc Geiger, Andreas Max Planck Institute for Intelligent Systems Tübingen University of Tübingen Computer Vision Lab ETH Zürich KU Leuven Max Planck ETH Center for Learning Systems
Humans perceive the 3D world as a set of distinct objects that are characterized by various low-level (geometry, reflectance) and high-level (connectivity, adjacency, symmetry) properties. Recent methods based on conv... 详细信息
来源: 评论
Learning Unsupervised Hierarchical Part Decomposition of 3D Objects From a Single RGB Image
Learning Unsupervised Hierarchical Part Decomposition of 3D ...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Despoina Paschalidou Luc Van Gool Andreas Geiger Max Planck Institute for Intelligent Systems Tübingen Computer Vision Lab ETH Zürich Max Planck ETH Center for Learning Systems KU Leuven University of Tübingen
Humans perceive the 3D world as a set of distinct objects that are characterized by various low-level (geometry, reflectance) and high-level (connectivity, adjacency, symmetry) properties. Recent methods based on conv... 详细信息
来源: 评论
Binding in hippocampal-entorhinal circuits enables compositionality in cognitive maps  24
Binding in hippocampal-entorhinal circuits enables compositi...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing systems
作者: Christopher J. Kymn Sonia Mazelet Anthony Thomas Denis Kleyko E. Paxon Frady Friedrich T. Sommer Bruno A. Olshausen Redwood Center for Theoretical Neuroscience Helen Wills Neuroscience Institute UC Berkeley Berkeley Redwood Center for Theoretical Neuroscience Helen Wills Neuroscience Institute UC Berkeley Berkeley and Université Paris-Saclay ENS Paris-Saclay Gif-sur-Yvette France Redwood Center for Theoretical Neuroscience Helen Wills Neuroscience Institute UC Berkeley Berkeley and Department of Electrical and Computer Engineering UC Davis Davis Centre for Applied Autonomous Sensor Systems Örebro University Örebro Sweden and Intelligent Systems Lab Research Institutes of Sweden Kista Sweden Intel Labs Santa Clara Redwood Center for Theoretical Neuroscience Helen Wills Neuroscience Institute UC Berkeley Berkeley and Intel Labs Santa Clara Redwood Center for Theoretical Neuroscience Helen Wills Neuroscience Institute UC Berkeley Berkeley and Herbert Wertheim School of Optometry & Vision Science UC Berkeley Berkeley
We propose a normative model for spatial representation in the hippocampal formation that combines optimality principles, such as maximizing coding range and spatial information per neuron, with an algebraic framework...
来源: 评论
Self-supervised linear motion deblurring
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Peidong Janai, Joel Pollefeys, Marc Sattler, Torsten Geiger, Andreas Computer Vision and Geometry Group Department of Computer Science ETH Zürich Switzerland Autonomous Vision Group Max Planck Institute for Intelligent Systems Univeristy of Tübingen Tübingen Germany Microsoft Mixed Reality and Artificial Intelligence Lab Zürich Switzerland Computer Vision and Medical Image Analysis Group Chalmers University of Technology Sweden
Motion blurry images challenge many computer vision algorithms, e.g., feature detection, motion estimation, or object recognition. Deep convolutional neural networks are state-of-the-art for image deblurring. However,... 详细信息
来源: 评论
NTIRE 2024 Challenge on Low Light Image Enhancement: Methods and Results
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Xiaoning Wu, Zongwei Li, Ao Vasluianu, Florin Zhang, Yulun Gu, Shuhang Zhang, Le Zhu, Ce Timofte, Radu Jin, Zhi Wu, Hongjun Wang, Chenxi Ling, Haitao Cai, Yuanhao Bian, Hao Zheng, Yuxin Lin, Jing Yuille, Alan Shao, Ben Guo, Jin Liu, Tianli Wu, Mohao Feng, Yixu Hou, Shuo Lin, Haotian Zhu, Yu Wu, Peng Dong, Wei Sun, Jinqiu Zhang, Yanning Yan, Qingsen Zou, Wenbin Yang, Weipeng Li, Yunxiang Wei, Qiaomu Ye, Tian Chen, Sixiang Zhang, Zhao Zhao, Suiyi Wang, Bo Luo, Yan Zuo, Zhichao Wang, Mingshen Wang, Junhu Wei, Yanyan Sun, Xiaopeng Gao, Yu Huang, Jiancheng Chen, Hongming Chen, Xiang Tang, Hui Chen, Yuanbin Zhou, Yuanbo Dai, Xinwei Qiu, Xintao Deng, Wei Gao, Qinquan Tong, Tong Li, Mingjia Hu, Jin He, Xinyu Guo, Xiaojie Sabarinathan Uma, K. Sasithradevi, A. Sathya Bama, B. Mohamed Mansoor Roomi, S. Srivatsav, V. Wang, Jinjuan Sun, Long Chen, Qiuying Shao, Jiahong Zhang, Yizhi Conde, Marcos V. Feijoo, Daniel Benito, Juan C. García, Alvaro Lee, Jaeho Kim, Seongwan Sharif, S.M.A. Khujaev, Nodirkhuja Tsoy, Roman Murtaza, Ali Khairuddin, Uswah Faudzi, Ahmad'Athif Mohd Malagi, Sampada Joshi, Amogh Akalwadi, Nikhil Desai, Chaitra Tabib, Ramesh Ashok Mudenagudi, Uma Lian, Wenyi Lian, Wenjing Kalyanshetti, Jagadeesh Aralikatti, Vijayalaxmi Ashok Yashaswini, Palani Upasi, Nitish Hegde, Dikshit Patil, Ujwala Sujata, C. Yan, Xingzhuo Hao, Wei Fu, Minghan Choksy, Pooja Sarvaiya, Anjali Upla, Kishor Raja, Kiran Yan, Hailong Zhang, Yunkai Li, Baiang Zhang, Jingyi Zheng, Huan University of Electronic Science and Technology of China China Computer Vision Lab University of Würzburg Germany Shanghai Jiao Tong University China Computer Vision Lab ETH Zurich Switzerland School of Intelligent Systems Engineering Sun Yat-sen University Shenzhen Campus Guangdong Shenzhen518107 China Guangdong Provincial Key Laboratory of Fire Science and Technology Guangzhou510006 China Johns Hopkins University United States Tsinghua University China Zhejiang Dahua Technology Co. Ltd. China School of Computer Science Northwestern Polytechnical University China School of Software Northwestern Polytechnical University China School of Computer Science Xi'an University of Architecture and Technology China South China University of Technology China Fuzhou University China Chengdu University of Information Technology China Hong Kong University of Science and Technology Guangzhou China Hefei University of Technology China Individual Researcher Shenyang Aerospace University China Nanjing University of Science and Technology China Fuzhou University Fuzhou China Imperial Vision Technology Fuzhou China Tianjin University China Couger Inc Japan Sasi Institute of Technology & Engineering India Vellore Institute of Technology India Thiagarajar college of engineering India Coventry University United Kingdom Cidaut AI CVLab University of Wuerzburg Germany Opt-AI University Teknologi Malaysia Kuala Lumpur Malaysia Universiti Teknologi Malaysia Kuala Lumpur Malaysia KLE Technological University Karnataka Hubballi India School of Electronics and Communication Engineering KLE Technological University Karnataka Hubballi India School of Computer Science and Engineering KLE Technological University Karnataka Hubballi India Uppsala University Sweden Northeastern University United States Bosch Investment Ltd. China Fortinet Inc. University of Saskatchewan Canada Sardar Vallabhbhai National Institute of Technology India Norwegian University of Science and Technolog
This paper reviews the NTIRE 2024 low light image enhancement challenge, highlighting the proposed solutions and results. The aim of this challenge is to discover an effective network design or solution capable of gen... 详细信息
来源: 评论
A mobile robot hand-arm teleoperation system by vision and IMU
arXiv
收藏 引用
arXiv 2020年
作者: Li, Shuang Jiang, Jiaxi Ruppel, Philipp Liang, Hongzhuo Ma, Xiaojian Hendrich, Norman Sun, Fuchun Zhang, Jianwei Department of Informatics Universität Hamburg Department of Computer Science RWTH Aachen University Center for Vision Cognition Learning and Autonomy Department of Statistics University of California Los Angeles United States State Key Lab on Intelligent Technology and Systems Department of Computer Science and Technology Tsinghua University
In this paper, we present a multimodal mobile teleoperation system that consists of a novel vision-based hand pose regression network (Transteleop) and an IMU-based arm tracking method. Transteleop observes the human ... 详细信息
来源: 评论
RayNet: Learning volumetric 3d reconstruction with ray potentials
arXiv
收藏 引用
arXiv 2019年
作者: Paschalidou, Despoina Ulusoy, Ali Osman Schmitt, Carolin Van Gool, Luc Geiger, Andreas Autonomous Vision Group MPI for Intelligent Systems Tübingen Microsoft Computer Vision Lab ETH Zürich KU Leuven Computer Vision and Geometry Group ETH Zürich Max Planck ETH Center for Learning Systems
In this paper, we consider the problem of reconstructing a dense 3D model using images captured from different views. Recent methods based on convolutional neural networks (CNN) allow learning the entire task from dat... 详细信息
来源: 评论
The quaternion-based anisotropic gradient for the color images  17
The quaternion-based anisotropic gradient for the color imag...
收藏 引用
17th Image Processing: Algorithms and systems Conference, IPAS 2019
作者: Voronin, V. Zelensky, A. Agaian, S. Don State Technical University Lab. «Mathematical Methods of Image Processing and Computer Vision Intelligent Systems» Gagarina 1 Rostov on Don Russia Moscow State University of Technology"STANKIN" Moscow Russia CUNY College of Staten Island Dept. of Computer Science New York United States
Image gradient, as a preprocessing step is an essential tool in image processing in many research areas such as edge detection, segmentation, smoothing, inpainting, etc. In the present paper, we develop a new gradient... 详细信息
来源: 评论
Feedback alfa-rooting algorithm for medical image enhancement  17
Feedback alfa-rooting algorithm for medical image enhancemen...
收藏 引用
17th Image Processing: Algorithms and systems Conference, IPAS 2019
作者: Voronin, V. Zelensky, A. Agaian, S. Don State Technical University Lab. «Mathematical Methods of Image Processing and Computer Vision Intelligent Systems» Gagarina 1 Rostov on Don Russia Moscow State University of Technology "STANKIN" Moscow Russia CUNY/ College of Staten Island Dept. of Computer Science New York United States
This paper presents a new combined local and global transform domain-based feedback image enhancement algorithm for medical diagnosis, treatment, and clinical research. The basic idea in using local alfa-rooting metho... 详细信息
来源: 评论