咨询与建议

限定检索结果

文献类型

  • 272 篇 期刊文献
  • 217 篇 会议
  • 4 册 图书

馆藏范围

  • 493 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 313 篇 工学
    • 222 篇 计算机科学与技术...
    • 192 篇 软件工程
    • 59 篇 控制科学与工程
    • 55 篇 生物工程
    • 49 篇 信息与通信工程
    • 42 篇 光学工程
    • 35 篇 生物医学工程(可授...
    • 34 篇 电气工程
    • 22 篇 电子科学与技术(可...
    • 21 篇 机械工程
    • 14 篇 化学工程与技术
    • 12 篇 仪器科学与技术
    • 11 篇 建筑学
    • 11 篇 交通运输工程
    • 10 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
  • 190 篇 理学
    • 81 篇 数学
    • 63 篇 物理学
    • 60 篇 生物学
    • 24 篇 统计学(可授理学、...
    • 15 篇 化学
    • 12 篇 系统科学
  • 71 篇 管理学
    • 40 篇 图书情报与档案管...
    • 33 篇 管理科学与工程(可...
    • 17 篇 工商管理
  • 30 篇 医学
    • 26 篇 临床医学
    • 20 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
  • 10 篇 法学
    • 9 篇 社会学
  • 5 篇 经济学
  • 5 篇 农学
  • 2 篇 教育学

主题

  • 19 篇 machine learning
  • 17 篇 training
  • 14 篇 feature extracti...
  • 13 篇 deep learning
  • 12 篇 computer vision
  • 9 篇 image segmentati...
  • 9 篇 visualization
  • 9 篇 semantics
  • 8 篇 reinforcement le...
  • 7 篇 image enhancemen...
  • 7 篇 face recognition
  • 7 篇 cameras
  • 7 篇 artificial intel...
  • 6 篇 task analysis
  • 6 篇 neural networks
  • 6 篇 vectors
  • 6 篇 costs
  • 6 篇 remote sensing
  • 6 篇 accuracy
  • 5 篇 three-dimensiona...

机构

  • 9 篇 department of co...
  • 9 篇 department of co...
  • 8 篇 shanghai jiao to...
  • 8 篇 institute for ar...
  • 8 篇 beijing national...
  • 7 篇 institute for ar...
  • 7 篇 the redwood cent...
  • 6 篇 german research ...
  • 6 篇 state key lab on...
  • 6 篇 tencent ai lab
  • 6 篇 computer vision ...
  • 6 篇 fuxi ai lab nete...
  • 6 篇 institute of aut...
  • 6 篇 center for resea...
  • 5 篇 state key lab on...
  • 5 篇 research institu...
  • 5 篇 the intelligent ...
  • 5 篇 hefei university...
  • 5 篇 national univers...
  • 5 篇 tsinghua shenzhe...

作者

  • 35 篇 huang minlie
  • 14 篇 zhu xiaoyan
  • 11 篇 chen chen
  • 11 篇 timofte radu
  • 10 篇 sun maosong
  • 10 篇 kleyko denis
  • 10 篇 ke pei
  • 9 篇 liu zhiyuan
  • 8 篇 bakas spyridon
  • 8 篇 zheng yinhe
  • 7 篇 liu yang
  • 7 篇 sun fuchun
  • 7 篇 huang fei
  • 6 篇 reinke annika
  • 6 篇 reuss pascal
  • 6 篇 kofler florian
  • 6 篇 fuchun sun
  • 6 篇 sultani waqas
  • 6 篇 mao xiaoxi
  • 6 篇 zhu jun

语言

  • 478 篇 英文
  • 11 篇 其他
  • 4 篇 中文
  • 1 篇 葡萄牙文
检索条件"机构=Computer Vision and Intelligent Systems Research Lab"
493 条 记 录,以下是221-230 订阅
排序:
Learning to Detect Unacceptable Machine Translations for Downstream Tasks
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Meng Jiang, Xin Liu, Yang Liu, Qun Huawei Noah’s Ark Lab Institute for Artificial Intelligence State Key Laboratory of Intelligent Technology and Systems Department of Computer Science and Technology Tsinghua University Beijing China Beijing National Research Center for Information Science and Technology
The field of machine translation has progressed tremendously in recent years. Even though the translation quality has improved significantly, current systems are still unable to produce uniformly acceptable machine tr... 详细信息
来源: 评论
Neural quality estimation with multiple hypotheses for grammatical error correction
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Zhenghao Yi, Xiaoyuan Sun, Maosong Yang, Liner Chua, Tat-Seng Department of Computer Science and Technology Tsinghua University Beijing China Institute for Artificial Intelligence Tsinghua University Beijing China Beijing National Research Center for Information Science and Technology State Key Lab on Intelligent Technology and Systems Tsinghua University Beijing China Beijing Academy of Artificial Intelligence Beijing Language and Culture University Beijing China School of Computing National University of Singapore Singapore
Grammatical Error Correction (GEC) aims to correct writing errors and help language learners improve their writing skills. However, existing GEC models tend to produce spurious corrections or fail to detect lots of er... 详细信息
来源: 评论
Large language models for diabetes training:a prospective study
收藏 引用
Science Bulletin 2025年 第6期70卷 934-942页
作者: Haoxuan Li Zehua Jiang Zhouyu Guan Yuqian Bao Yuexing Liu Tingting Hu Jiajia Li Ruhan Liu Liang Wu Di Cheng Hongwei Ji Yong Wang Ya-Xing Wang Carol Y.Cheung Yingfeng Zheng Jihong Wang Zhen Li Weibing Wu Cynthia Ciwei Lim Yong Mong Bee Hong Chang Tan Elif I.Ekinci David C.Klonoff Justin B.Echouffo-Tcheugui Nestoras Mathioudakis Leonor Corsino Rafael Simó Charumathi Sabanayagam Gavin Siew Wei Tan Ching-Yu Cheng Tien Yin Wong Huating Li Chun Cai Lijuan Mao Lee-Ling Lim Yih-Chung Tham Bin Sheng Weiping Jia Shanghai University of Sport Shanghai 200438China School of Clinical Medicine Beijing Tsinghua Changgung HospitalTsinghua MedicineTsinghua UniversityBeijing 100084China Beijing Visual Science and Translational Eye Research Institute(BERI) Tsinghua MedicineTsinghua UniversityBeijing 100084China Shanghai Belt and Road International Joint Laboratory of Intelligent Prevention and Treatment for Metabolic Diseases Department of Computer Science and EngineeringSchool of ElectronicInformationand Electrical EngineeringShanghai Jiao Tong UniversityDepartment of Endocrinology and MetabolismShanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai 200240China MoE Key Lab of Artificial Intelligence Artificial Intelligence InstituteShanghai Jiao Tong UniversityShanghai 200240China Department of Cardiology the Affiliated Hospital of Qingdao UniversityQingdao 266011China CEMS NCMISHCMSMADISAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing 100190China School of Mathematics University of Chinese Academy of SciencesChinese Academy of SciencesBeijing 100049China Key Laboratory of Systems Health Science of Zhejiang Province School of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou 310024China Beijing Institute of Ophthalmology Beijing Tongren HospitalCapital Medical UniversityBeijing Ophthalmology and Visual Sciences Key LaboratoryBeijing 100730China k.Department of Ophthalmology and Visual Sciences The Chinese University of Hong KongHong Kong 999077China State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat-sen UniversityGuangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangdong Provincial Clinical Research Center for Ocular DiseasesGuangzhou 510060China Department of Renal Medicine Singapore General HospitalSingHealth-Duke Academic Medical CentreSingapore169
Diabetes poses a considerable global health challenge,with varying levels of diabetes knowledge among healthcare professionals,highlighting the importance of diabetes *** Language Models(LLMs)provide new insights into... 详细信息
来源: 评论
Stylized dialogue response generation using stylized unpaired texts
arXiv
收藏 引用
arXiv 2020年
作者: Zheng, Yinhe Chen, Zikai Zhang, Rongsheng Huang, Shilei Mao, Xiaoxi Hang, Minlie Department of Computer Science and Technology Institute for Artifical Intelligence State Key Lab of Intelligent Technology and Systems Beijing National Research Center for Information Science and Technology Tsinghua University Beijing China Fuxi AI Lab NetEase Inc. Hangzhou China Beijing China
Generating stylized responses is essential to build intelligent and engaging dialogue systems. However, this task is far from well-explored due to the difficulties of rendering a particular style in coherent responses... 详细信息
来源: 评论
A self-training method for machine reading comprehension with soft evidence extraction
arXiv
收藏 引用
arXiv 2020年
作者: Niu, Yilin Jiao, Fangkai Zhou, Mantong Yao, Ting Xu, Jingfang Huang, Minlie Department of Computer Science and Technology Institute for Artificial Intelligence State Key Lab of Intelligent Technology and Systems Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China School of Computer Science and Technology Shandong University Sogou Inc. Beijing China
Neural models have achieved great success on machine reading comprehension (MRC), many of which typically consist of two components: an evidence extractor and an answer predictor. The former seeks the most relevant in... 详细信息
来源: 评论
Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform
arXiv
收藏 引用
arXiv 2022年
作者: Ma, Qian Gao, Wei Xiao, Qiang Ding, Lingsong Gao, Tianyi Zhou, Yajun Gao, Xinxin Yan, Tao Liu, Che Gu, Ze Kong, Xianghong Abbasi, Qammer H. Li, Lianlin Qiu, Cheng-Wei Li, Yuanqing Cui, Tie Jun Institute of Electromagnetic Space Southeast University Nanjing210096 China School of Automation Science and Engineering South China University of Technology Guangzhou510641 China State Key Laboratory of Millimeter Wave Southeast University Nanjing210096 China Center of Intelligent Metamaterials Pazhou Laboratory Guangzhou510330 China Research Center for Brain-Computer Interface Pazhou Lab Guangzhou510330 China Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore University of Glasgow James Watt School of Engineering GlasgowG12 8QQ United Kingdom State Key Laboratory of Advanced Optical Communication Systems and Networks Department of Electronics Peking University Beijing100871 China
Brain-computer interfaces (BCIs), invasive or non-invasive, have projected unparalleled vision and promise for assisting patients in need to better their interaction with the surroundings. Inspired by the BCI-based re... 详细信息
来源: 评论
Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation
Reusing Discriminators for Encoding: Towards Unsupervised Im...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Runfa Chen Wenbing Huang Binghui Huang Fuchun Sun Bin Fang Department of Computer Science and Technology Tsinghua University Institute for Artificial Intelligence Tsinghua University (THUAI) Beijing National Research Center for Information Science and Technology (BNRist) State Key Lab on Intelligent Technology and Systems Beijing P.R.China
Unsupervised image-to-image translation is a central task in computer vision. Current translation frameworks will abandon the discriminator once the training process is completed. This paper contends a novel role of t... 详细信息
来源: 评论
The Lagrangian remainder of Taylor’s series, distinguishes O(f(x)) time complexities to polynomials or not
arXiv
收藏 引用
arXiv 2020年
作者: Bakas, Nikolaos P. Kosmatopoulos, Elias Chatzichristofis, Savvas A. Computation-based Science and Technology Research Center Cyprus Institute 20 Konstantinou Kavafi Street Aglantzia Nicosia2121 Cyprus Democritus University of Thrace Electrical and Computer engineering Intelligent Systems Lab Department of Computer Science Neapolis University Pafos 2 Danais Avenue Pafos8042 Cyprus
The purpose of this letter is to investigate the time complexity consequences of the truncated Taylor series, known as Taylor Polynomials [1–3]. In particular, it is demonstrated that the examination of the P = NP eq... 详细信息
来源: 评论
Human action recognition in drone videos using a few aerial training examples
arXiv
收藏 引用
arXiv 2019年
作者: Sultani, Waqas Shah, Mubarak Intelligent Machine Lab Information Technology University Lahore Pakistan Center for Research in Computer Vision University of Central Florida Orlando United States
Drones are enabling new forms of human actions surveillance due to their low cost and fast mobility. However, using deep neural networks for automatic aerial action recognition is difficult due to the need for a large... 详细信息
来源: 评论
When counterpoint meets chinese folk melodies  20
When counterpoint meets chinese folk melodies
收藏 引用
Proceedings of the 34th International Conference on Neural Information Processing systems
作者: Nan Jiang Sheng Jin Zhiyao Duan Changshui Zhang Institute for Artificial Intelligence Tsinghua University (THUAI) and State Key Lab of Intelligent Technologies and Systems and Beijing National Research Center for Information Science and Technology (BNRist) and Department of Automation Tsinghua University Beijing China Department of Electrical and Computer Engineering University of Rochester
Counterpoint is an important concept in Western music theory. In the past century, there have been significant interests in incorporating counterpoint into Chinese folk music composition. In this paper, we propose a r...
来源: 评论