咨询与建议

限定检索结果

文献类型

  • 272 篇 期刊文献
  • 217 篇 会议
  • 4 册 图书

馆藏范围

  • 493 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 313 篇 工学
    • 222 篇 计算机科学与技术...
    • 192 篇 软件工程
    • 59 篇 控制科学与工程
    • 55 篇 生物工程
    • 49 篇 信息与通信工程
    • 42 篇 光学工程
    • 35 篇 生物医学工程(可授...
    • 34 篇 电气工程
    • 22 篇 电子科学与技术(可...
    • 21 篇 机械工程
    • 14 篇 化学工程与技术
    • 12 篇 仪器科学与技术
    • 11 篇 建筑学
    • 11 篇 交通运输工程
    • 10 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
  • 190 篇 理学
    • 81 篇 数学
    • 63 篇 物理学
    • 60 篇 生物学
    • 24 篇 统计学(可授理学、...
    • 15 篇 化学
    • 12 篇 系统科学
  • 71 篇 管理学
    • 40 篇 图书情报与档案管...
    • 33 篇 管理科学与工程(可...
    • 17 篇 工商管理
  • 30 篇 医学
    • 26 篇 临床医学
    • 20 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
  • 10 篇 法学
    • 9 篇 社会学
  • 5 篇 经济学
  • 5 篇 农学
  • 2 篇 教育学

主题

  • 19 篇 machine learning
  • 17 篇 training
  • 14 篇 feature extracti...
  • 13 篇 deep learning
  • 12 篇 computer vision
  • 9 篇 image segmentati...
  • 9 篇 visualization
  • 9 篇 semantics
  • 8 篇 reinforcement le...
  • 7 篇 image enhancemen...
  • 7 篇 face recognition
  • 7 篇 cameras
  • 7 篇 artificial intel...
  • 6 篇 task analysis
  • 6 篇 neural networks
  • 6 篇 vectors
  • 6 篇 costs
  • 6 篇 remote sensing
  • 6 篇 accuracy
  • 5 篇 three-dimensiona...

机构

  • 9 篇 department of co...
  • 9 篇 department of co...
  • 8 篇 shanghai jiao to...
  • 8 篇 institute for ar...
  • 8 篇 beijing national...
  • 7 篇 institute for ar...
  • 7 篇 the redwood cent...
  • 6 篇 german research ...
  • 6 篇 state key lab on...
  • 6 篇 tencent ai lab
  • 6 篇 computer vision ...
  • 6 篇 fuxi ai lab nete...
  • 6 篇 institute of aut...
  • 6 篇 center for resea...
  • 5 篇 state key lab on...
  • 5 篇 research institu...
  • 5 篇 the intelligent ...
  • 5 篇 hefei university...
  • 5 篇 national univers...
  • 5 篇 tsinghua shenzhe...

作者

  • 35 篇 huang minlie
  • 14 篇 zhu xiaoyan
  • 11 篇 chen chen
  • 11 篇 timofte radu
  • 10 篇 sun maosong
  • 10 篇 kleyko denis
  • 10 篇 ke pei
  • 9 篇 liu zhiyuan
  • 8 篇 bakas spyridon
  • 8 篇 zheng yinhe
  • 7 篇 liu yang
  • 7 篇 sun fuchun
  • 7 篇 huang fei
  • 6 篇 reinke annika
  • 6 篇 reuss pascal
  • 6 篇 kofler florian
  • 6 篇 fuchun sun
  • 6 篇 sultani waqas
  • 6 篇 mao xiaoxi
  • 6 篇 zhu jun

语言

  • 478 篇 英文
  • 11 篇 其他
  • 4 篇 中文
  • 1 篇 葡萄牙文
检索条件"机构=Computer Vision and Intelligent Systems Research Lab"
493 条 记 录,以下是81-90 订阅
排序:
What Matters for Active Texture Recognition With vision-Based Tactile Sensors
What Matters for Active Texture Recognition With Vision-Base...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Alina Böhm Tim Schneider Boris Belousov Alap Kshirsagar Lisa Lin Katja Doerschner Knut Drewing Constantin A. Rothkopf Jan Peters Department of Computer Science Intelligent Autonomous Systems Lab TU Darmstadt Germany German Research Center for AI (DFKI) Department of Psychology University of Giessen Germany Centre for Cognitive Science Technical University of Darmstadt Hessian Center for Artificial Intelligence (Hessian.AI) Darmstadt
This paper explores active sensing strategies that employ vision-based tactile sensors for robotic perception and classification of fabric textures. We formalize the active sampling problem in the context of tactile f... 详细信息
来源: 评论
Antifragile Perimeter Control: Anticipating and Gaining from Disruptions with Reinforcement Learning
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Linghang Makridis, Michail A. Genser, Alexander Axenie, Cristian Grossi, Margherita Kouvelas, Anastasios Institute for Transport Planning and Systems ETH Zurich Zurich8093 Switzerland Computer Science Department Center for Artificial Intelligence Technische Hochschule Nürnberg Nürnberg90489 Germany Intelligent Cloud Technologies Lab Huawei Munich Research Center Munich80992 Germany
The optimal operation of transportation systems is often susceptible to unexpected disruptions, such as traffic accidents and social events. Many established control strategies relying on mathematical models can strug... 详细信息
来源: 评论
Projected gans converge faster
arXiv
收藏 引用
arXiv 2021年
作者: Sauer, Axel Chitta, Kashyap Müller, Jens Geiger, Andreas University of Tübingen Max Planck Institute for Intelligent Systems Tübingen Germany Computer Vision and Learning Lab University Heidelberg
Generative Adversarial Networks (GANs) produce high-quality images but are challenging to train. They need careful regularization, vast amounts of compute, and expensive hyper-parameter sweeps. We make significant hea... 详细信息
来源: 评论
HealthEdge: A Machine Learning-Based Smart Healthcare Framework for Prediction of Type 2 Diabetes in an Integrated IoT, Edge, and Cloud Computing System
收藏 引用
Procedia computer Science 2023年 220卷 331-338页
作者: Alain Hennebelle Huned Materwala Leila Ismail Independent Researcher Melbourne Australia Intelligent Distributed Computing and Systems (INDUCE) Research Laboratory Department of Computer Science and Software Engineering College of Information Technology United Arab Emirates University United Arab Emirates National Water and Energy Center United Arab Emirates University United Arab Emirates Cloud Computing and Distributed Systems (CLOUDS) Lab School of Computing and Information Systems The University of Melbourne Australia
Diabetes Mellitus has no permanent cure to date and is one of the leading causes of death globally. The alarming increase in diabetes calls for the need to take precautionary measures to avoid/predict the occurrence o... 详细信息
来源: 评论
Directed Acyclic Transformer Pre-training for High-quality Non-autoregressive Text Generation
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Fei Ke, Pei Huang, Minlie The CoAI group Tsinghua University Beijing China Institute for Artificial Intelligence State Key Lab of Intelligent Technology and Systems Beijing National Research Center for Information Science and Technology Department of Computer Science and Technology Tsinghua University Beijing China
Non-AutoRegressive (NAR) text generation models have drawn much attention because of their significantly faster decoding speed and good generation quality in machine translation. However, in a wider range of text gene... 详细信息
来源: 评论
Modeling dynamic target deformation in camera calibration
arXiv
收藏 引用
arXiv 2021年
作者: Hagemann, Annika Knorr, Moritz Stiller, Christoph Robert Bosch GmbH Computer Vision Research Lab Institute of Measurement & Control Systems Karlsruhe Institute of Technology
Most approaches to camera calibration rely on calibration targets of well-known geometry. During data acquisition, calibration target and camera system are typically moved w.r.t. each other, to allow image coverage an... 详细信息
来源: 评论
Dogfight: Detecting drones from drones videos
arXiv
收藏 引用
arXiv 2021年
作者: Ashraf, Muhammad Waseem Sultani, Waqas Shah, Mubarak Intelligent Machines Lab Information Technology University Pakistan Center for Research in Computer Vision University of Central Florida United States
As airborne vehicles are becoming more autonomous and ubiquitous, it has become vital to develop the capability to detect the objects in their surroundings. This paper attempts to address the problem of drones detecti... 详细信息
来源: 评论
Motion Planning Diffusion: Learning and Adapting Robot Motion Planning with Diffusion Models
arXiv
收藏 引用
arXiv 2024年
作者: Carvalho, João Le, An T. Kicki, Piotr Koert, Dorothea Peters, Jan Intelligent Autonomous Systems Lab Computer Science Department Technical University of Darmstadt Germany Poznan University of Technology Poland IDEAS NCBR Warsaw Poland Centre for Cognitive Science Technical University of Darmstadt Germany Research Department: SAIROL Darmstadt Germany Hessian.AI Darmstadt Germany
—The performance of optimization-based robot motion planning algorithms is highly dependent on the initial solutions, commonly obtained by running a sampling-based planner to obtain a collision-free path. However, th... 详细信息
来源: 评论
NTIRE 2023 Image Shadow Removal Challenge Report
NTIRE 2023 Image Shadow Removal Challenge Report
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern Recognition Workshops, CVPRW 2023
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Timofte, Radu Cui, Shuhao Huang, Junshi Tian, Shuman Fan, Mingyuan Zhang, Jiaqi Zhu, Li Wei, Xiaoming Wei, Xiaolin Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Dong, Xiaoyi Zhang, Xi Sheryl Li, Chenghua Leng, Cong Yeo, Woon-Ha Oh, Wang-Taek Lee, Yeo-Reum Ryu, Han-Cheol Luo, Jinting Jiang, Chengzhi Han, Mingyan Wu, Qi Lin, Wenjie Yu, Lei Li, Xinpeng Jiang, Ting Fan, Haoqiang Liu, Shuaicheng Xu, Shuning Song, Binbin Chen, Xiangyu Zhang, Shile Zhou, Jiantao Zhang, Zhao Zhao, Suiyi Zheng, Huan Gao, Yangcheng Wei, Yanyan Wang, Bo Ren, Jiahuan Luo, Yan Kondo, Yuki Miyata, Riku Yasue, Fuma Naruki, Taito Ukita, Norimichi Chang, Hua-En Yang, Hao-Hsiang Chen, Yi-Chung Chiang, Yuan-Chun Huang, Zhi-Kai Chen, Wei-Ting Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Xianwei, Li Fu, Huiyuan Liu, Chunlin Ma, Huadong Fu, Binglan He, Huiming Wang, Mengjia She, Wenxuan Liu, Yu Nathan, Sabari Kansal, Priya Zhang, Zhongjian Yang, Huabin Wang, Yan Zhang, Yanru Phutke, Shruti S. Kulkarni, Ashutosh Khan, Md Raqib Murala, Subrahmanyam Vipparthi, Santosh Kumar Ye, Heng Liu, Zixi Yang, Xingyi Liu, Songhua Wu, Yinwei Jing, Yongcheng Yu, Qianhao Zheng, Naishan Huang, Jie Long, Yuhang Yao, Mingde Zhao, Feng Zhao, Bowen Ye, Nan Shen, Ning Cao, Yanpeng Xiong, Tong Xia, Weiran Li, Dingwen Xia, Shuchen Computer Vision Lab Ifi Caidas University of Würzburg Germany Computer Vision Lab Eth Zürich Switzerland Meituan Group China Department of Information Technology Uppsala University Sweden Institute of Automation Chinese Academy of Sciences Beijing China Nanjing China Maicro Nanjing China Department of Artificial Intelligence Convergence Sahmyook University Seoul Korea Republic of Megvii Technology China University of Electronic Science and Technology of China China University of Macau China China Toyota Technological Institute Japan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Beijing University of Post and Teleconmunication Beijing China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education China Couger Inc. Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar Punjab Rupnagar India Research Institute Singapore National University of Singapore Singapore Research Institute Singapore University of Sydney Australia Brain-Inspired Vision Laboratory Information Science and Technology Institution University of Science and Technology of China China State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou310027 China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou310027 China South China University of Technology China
This work reviews the results of the NTIRE 2023 Challenge on Image Shadow Removal. The described set of solutions were proposed for a novel dataset, which captures a wide range of object-light interactions. It consist... 详细信息
来源: 评论
Energy Efficiency Maximization in RISs-Assisted UAVs-Based Edge Computing Network Using Deep Reinforcement Learning
收藏 引用
Big Data Mining and Analytics 2024年 第4期7卷 1065-1083页
作者: Chuanwen Luo Jian Zhang Jianxiong Guo Yi Hong Zhibo Chen Shuyang Gu School of Information Science and Technology Beijing Forestry UniversityBeijing 100083Chinaand also with the Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland AdministrationBeijing 100083China Advanced Institute of Natural Sciences Beijing Normal UniversityZhuhai 519087Chinaand also with the Guangdong Key Lab of AI and Multi-Modal Data ProcessingBNU-HKBU United International CollegeZhuhai 519087China Department of Computer Information Systems Texas A&M University-Central TexasKilleenTX 76549USA
Edge Computing(EC)pushes computational capability to the Terrestrial Devices(TDs),providing more efficient and faster computing *** Aerial Vehicles(UAVs)equipped with EC servers can be flexibly deployed,even in comple... 详细信息
来源: 评论