咨询与建议

限定检索结果

文献类型

  • 13 篇 会议
  • 6 篇 期刊文献

馆藏范围

  • 19 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 工学
    • 9 篇 计算机科学与技术...
    • 7 篇 生物医学工程(可授...
    • 7 篇 软件工程
    • 6 篇 光学工程
    • 3 篇 生物工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 建筑学
  • 6 篇 理学
    • 3 篇 物理学
    • 3 篇 生物学
    • 2 篇 数学
    • 1 篇 系统科学
  • 4 篇 管理学
    • 4 篇 图书情报与档案管...
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 3 篇 augmented realit...
  • 2 篇 medical imaging
  • 2 篇 computer vision
  • 1 篇 surveys
  • 1 篇 grasping
  • 1 篇 biology
  • 1 篇 computer archite...
  • 1 篇 computer interfa...
  • 1 篇 surface texture ...
  • 1 篇 grippers
  • 1 篇 3d segmentation
  • 1 篇 planning
  • 1 篇 engineering in m...
  • 1 篇 education
  • 1 篇 pervasive comput...
  • 1 篇 distortion
  • 1 篇 dictionaries
  • 1 篇 neural networks
  • 1 篇 computational ge...
  • 1 篇 face recognition

机构

  • 2 篇 university of sc...
  • 2 篇 universidad pomp...
  • 2 篇 multimodal inter...
  • 2 篇 department of in...
  • 2 篇 center for mr re...
  • 2 篇 fraunhofer mevis...
  • 2 篇 department of co...
  • 2 篇 essen
  • 2 篇 institute for co...
  • 2 篇 centre for biome...
  • 2 篇 diagnostic image...
  • 2 篇 nanjing universi...
  • 2 篇 institute of sof...
  • 1 篇 sbilab departmen...
  • 1 篇 electrical engin...
  • 1 篇 massachusetts in...
  • 1 篇 ihu strasbourg
  • 1 篇 computer vision ...
  • 1 篇 computer vision ...
  • 1 篇 ieee computer so...

作者

  • 4 篇 egger jan
  • 2 篇 gsaxner christin...
  • 2 篇 müller henning
  • 2 篇 kleesiek jens
  • 2 篇 langs georg
  • 2 篇 hanbury allan
  • 1 篇 acero jorge corr...
  • 1 篇 al khalil yasmin...
  • 1 篇 d. aydogan
  • 1 篇 commowick olivie...
  • 1 篇 c. fuller
  • 1 篇 z. zhao
  • 1 篇 kern roman
  • 1 篇 kybic jan
  • 1 篇 h. kaufmann
  • 1 篇 d. zimmerer
  • 1 篇 r. dorent
  • 1 篇 justus piater
  • 1 篇 conde marcos v.
  • 1 篇 bano sophia

语言

  • 18 篇 英文
  • 1 篇 其他
检索条件"机构=Computer Vision and Interactive Technology"
19 条 记 录,以下是1-10 订阅
排序:
MultiAR: A Multi-User Augmented Reality Platform for Biomedical Education  46
MultiAR: A Multi-User Augmented Reality Platform for Biomedi...
收藏 引用
46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
作者: Perz, Markus Luijten, Gijs Kleesiek, Jens Schmalstieg, Dieter Egger, Jan Gsaxner, Christina West German Cancer Center Cancer Research Center Cologne Essen Essen Germany University of Stuttgart Institute for Visualization and Interactive Systems Stuttgart Germany Graz University of Technology Institute of Computer Graphics and Vision Graz Austria University Medicine Essen Institute for Artificial Intelligence in Medicine Essen Germany Essen Germany
This paper addresses the growing integration of Augmented Reality (AR) in biomedical sciences, emphasizing collaborative learning experiences. We present MultiAR, a versatile, domain-specific platform enabling multi-u... 详细信息
来源: 评论
Indoor Staircase Detection for Supporting Security Systems in Autonomous Smart Wheelchairs Based on Deep Analysis of the Co-Occurrence Matrix
SSRN
收藏 引用
SSRN 2023年
作者: Utaminingrum, Fitri Wahyudi, Slamet Karim, Corina Johan, Ahmad Wali Satria Bahari Shih, Timothy K. Lin, Chih-Yang Computer Vision Research Groups Faculty of Computer Science Brawijaya University Malang65145 Indonesia Mechanical Department Brawijaya University Malang65145 Indonesia Mathematics Department Brawijaya University Malang65145 Indonesia Department of Informatics Institut Teknologi Telkom Purwokerto Surabaya65145 Indonesia Department of Computer Science and Information Engineering National Central University Taoyuan City32001 Taiwan Computer Vision and Interactive Technology Department of Electrical Engineering Yuan-Ze University Taoyuan City32003 Taiwan
Detection of descending stairs and floors is important in implementing autonomous systems in smart wheelchairs. Suppose the obstacle detection system applied to wheelchairs cannot properly detect the descending stairs... 详细信息
来源: 评论
Deep interactive Segmentation of Medical Images: A Systematic Review and Taxonomy
arXiv
收藏 引用
arXiv 2023年
作者: Marinov, Zdravko Jäger, Paul F. Egger, Jan Kleesiek, Jens Stiefelhagen, Rainer The Computer Vision for Human-Computer Interaction Lab Department of Informatics Karlsruhe Institute of Technology Adenauerring 10 Karlsruhe76131 Germany Girardetstraße 2 Essen45131 Germany Heidelberg Interactive Machine Learning Group Im Neuenheimer Feld 223 Heidelberg69120 Germany The Helmholtz Imaging DKFZ Im Neuenheimer Feld 223 Heidelberg69120 Germany
interactive segmentation is a crucial research area in medical image analysis aiming to boost the efficiency of costly annotations by incorporating human feedback. This feedback takes the form of clicks, scribbles, or... 详细信息
来源: 评论
MultiAR: A Multi-User Augmented Reality Platform for Biomedical Education
MultiAR: A Multi-User Augmented Reality Platform for Biomedi...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Markus Perz Gijs Luijten Jens Kleesiek Dieter Schmalstieg Jan Egger Christina Gsaxner Institute of Computer Graphics and Vision Graz University of Technology Graz Austria Institute for Artificial Intelligence in Medicine University Medicine Essen Essen Germany Cancer Research Center Cologne Essen West German Cancer Center Essen Germany Institute for Visualization and Interactive Systems University of Stuttgart Stuttgart Germany Virtual and Extended Reality in Medicine (ZvRM) University Hospital Essen Essen Germany
This paper addresses the growing integration of Augmented Reality (AR) in biomedical sciences, emphasizing collaborative learning experiences. We present MultiAR, a versatile, domain-specific platform enabling multi-u... 详细信息
来源: 评论
Efficient Deep Models for Real-Time 4K Image Super-Resolution. NTIRE 2023 Benchmark and Report
Efficient Deep Models for Real-Time 4K Image Super-Resolutio...
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern Recognition Workshops, CVPRW 2023
作者: Conde, Marcos V. Zamfir, Eduard Timofte, Radu Motilla, Daniel Liu, Cen Zhang, Zexin Peng, Yunbo Lin, Yue Guo, Jiaming Zou, Xueyi Chen, Yuyi Liu, Yi Hao, Jia Yan, Youliang Zhang, Yuanfan Li, Gen Sun, Lei Kong, Lingshun Bai, Haoran Pan, Jinshan Dong, Jiangxin Tang, Jinhui Ayazoglu, Mustafa Bilecen, Bahri Batuhan Li, Mingxi Zhang, Yuhang Fan, Xianjun Sheng, Yankai Sun, Long Liu, Zibin Gou, Weiran Li, Shaoqing Yi, Ziyao Xiang, Yan Kong, Dehui Xu, Ke Gankhuyag, Ganzorig Yoon, Kihwan Zhang, Jin Yu, Gaocheng Zhang, Feng Wang, Hongbin Zhou, Zhou Chao, Jiahao Gao, Hongfan Gong, Jiali Yang, Zhengfeng Zeng, Zhenbing Chen, Chengpeng Guo, Zichao Park, Anjin Liu, Yuqing Jia, Qi Yu, Hongyuan Yin, Xuanwu Zuo, Kunlong Zhang, Dongyang Fu, Ting Cheng, Zhengxue Zhu, Shiai Zhou, Dajiang Yu, Weichen Ge, Lin Dong, Jiahua Zou, Yajun Wu, Zhuoyuan Han, Binnan Zhang, Xiaolin Zhang, Heng Shao, Ben Zheng, Shaolong Yin, Daheng Chen, Baijun Liu, Mengyang Nistor, Marian-Sergiu Chen, Yi-Chung Huang, Zhi-Kai Chiang, Yuan-Chun Chen, Wei-Ting Yang, Hao-Hsiang Chang, Hua-En Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Vo, Tu Yan, Qingsen Zhu, Yun Su, Jinqiu Zhang, Yanning Zhang, Cheng Luo, Jiaying Cho, Youngsun Lee, Nakyung Computer Vision Lab CAIDAS IFI University of Würzburg Germany Sony Interactive Entertainment CA United States Huawei Technologies Co. Ltd. China NetEase Games AI Lab Nanjing University of Science and Technology China Tencent China Attrsense Korea Republic of Sanechips Co Ltd Ant Group China East China Normal University China Shopee Dalian University of Technology Xiaomi Inc. China China Zhejiang Dahua Technology Co. Ltd. China Multimedia Department Xiaomi Inc. China Korea Photonic Technology Institute Korea Republic of School of Computer Science and Engineering Southeast University China University Al. I. Cuza Iasi Romania Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Northwestern Polytechnical University China KC Machine Learning Lab CJ OliveNetworks AI Research
This paper introduces a novel benchmark for efficient up-scaling as part of the NTIRE 2023 Real-Time Image Super-Resolution (RTSR) Challenge, which aimed to upscale images from 720p and 1080p resolution to native 4K (... 详细信息
来源: 评论
Deep learning - A first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact
arXiv
收藏 引用
arXiv 2020年
作者: Egger, Jan Pepe, Antonio Gsaxner, Christina Jin, Yuan Li, Jianning Kern, Roman Institute of Computer Graphics and Vision Faculty of Computer Science and Biomedical Engineering Graz University of Technology Graz Austria Computer Algorithms for Medicine Laboratory Graz Austria Department of Oral and Maxillofacial Surgery Medical University of Graz Graz Austria University Medicine Essen Essen Germany Research Center for Connected Healthcare Big Data Zhejiang Lab Zhejiang Hangzhou China Research Unit Experimental Neurotraumatology Department of Neurosurgery Medical University of Graz Graz Austria Knowledge Discovery Know-Center Graz Austria Institute of Interactive Systems and Data Science Graz University of Technology Graz Austria
Deep learning belongs to the field of artificial intelligence, where machines perform tasks that typically require some kind of human intelligence. Deep learning tries to achieve this by drawing inspiration from the l... 详细信息
来源: 评论
Using phase instead of optical flow for action recognition
arXiv
收藏 引用
arXiv 2018年
作者: Hommos, Omar Pintea, Silvia L. Mettes, Pascal S.M. van Gemert, Jan C. Computer Vision Lab Delft University of Technology Netherlands Intelligent Sensory Interactive Systems University of Amsterdam Netherlands
Currently, the most common motion representation for action recognition is optical flow. Optical flow is based on particle tracking which adheres to a Lagrangian perspective on dynamics. In contrast to the Lagrangian ... 详细信息
来源: 评论
Why is the Winner the Best?
Why is the Winner the Best?
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: M. Eisenmann A. Reinke V. Weru M. D. Tizabi F. Isensee T. J. Adler S. Ali V. Andrearczyk M. Aubreville U. Baid S. Bakas N. Balu S. Bano J. Bernal S. Bodenstedt A. Casella V. Cheplygina M. Daum M. De Bruijne A. Depeursinge R. Dorent J. Egger D. G. Ellis S. Engelhardt M. Ganz N. Ghatwary G. Girard P. Godau A. Gupta L. Hansen K. Harada M. Heinrich N. Heller A. Hering A. Huaulmé P. Jannin A. E. Kavur O. Kodym M. Kozubek J. Li H. Li J. Ma C. Martín-Isla B. Menze A. Noble V. Oreiller N. Padoy S. Pati K. Payette T. Rädsch J. Rafael-Patiño V. Singh Bawa S. Speidel C. H. Sudre K. Van Wijnen M. Wagner D. Wei A. Yamlahi M. H. Yap C. Yuan M. Zenk A. Zia D. Zimmerer D. Aydogan B. Bhattarai L. Bloch R. Brüngel J. Cho C. Choi Q. Dou I. Ezhov C. M. Friedrich C. Fuller R. R. Gaire A. Galdran Á. García Faura M. Grammatikopoulou S. Hong M. Jahanifar I. Jang A. Kadkhodamohammadi I. Kang F. Kofler S. Kondo H. Kuijf M. Li M. Luu T. Martinčič P. Morais M. A. Naser B. Oliveira D. Owen S. Pang J. Park S. Park S. Płotka E. Puybareau N. Rajpoot K. Ryu N. Saeed A. Shephard P. Shi D. Štepec R. Subedi G. Tochon H. R. Torres H. Urien J. L. Vilaça K. A. Wahid H. Wang J. Wang L. Wang X. Wang B. Wiestler M. Wodzinski F. Xia J. Xie Z. Xiong S. Yang Y. Yang Z. Zhao K. Maier-Hein P. F. Jäger A. Kopp-Schneider L. Maier-Hein Division of Intelligent Medical Systems German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Imaging German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Engineering and Physical Sciences School of Computing University of Leeds Leeds UK Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Sierre Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland Technische Hochschule Ingolstadt Ingolstadt Germany Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Washington Seattle WA USA Department of Computer Science Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) University College London London UK Universitat Autònoma de Barcelona & Computer Vision Center Barcelona Spain Division of Translational Surgical Oncology National Center for Tumor Diseases (NCT/UCC) Dresden Dresden Germany Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy IT University of Copenhagen Copenhagen Denmark Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany Department of Radiology and Nuc
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
来源: 评论
Biomedical image analysis competitions: The state of current participation practice
arXiv
收藏 引用
arXiv 2022年
作者: Eisenmann, Matthias Reinke, Annika Weru, Vivienn Tizabi, Minu Dietlinde Isensee, Fabian Adler, Tim J. Godau, Patrick Cheplygina, Veronika Kozubek, Michal Maier-Hein, Klaus Jäger, Paul F. Kopp-Schneider, Annette Maier-Hein, Lena Ali, Sharib Gupta, Anubha Kybic, Jan Noble, Alison de Solórzano, Carlos Ortiz Pachade, Samiksha Petitjean, Caroline Sage, Daniel Wei, Donglai Wilden, Elizabeth Alapatt, Deepak Andrearczyk, Vincent Baid, Ujjwal Bakas, Spyridon Balu, Niranjan Bano, Sophia Bawa, Vivek Singh Bernal, Jorge Bodenstedt, Sebastian Casella, Alessandro Choi, Jinwook Commowick, Olivier Daum, Marie Depeursinge, Adrien Dorent, Reuben Egger, Jan Eichhorn, Hannah Engelhardt, Sandy Ganz, Melanie Girard, Gabriel Hansen, Lasse Heinrich, Mattias Heller, Nicholas Hering, Alessa Huaulmé, Arnaud Kim, Hyunjeong Li, Hongwei Bran Landman, Bennett Li, Jianning Ma, Jun Martel, Anne Martín-Isla, Carlos Menze, Bjoern Nwoye, Chinedu Innocent Oreiller, Valentin Padoy, Nicolas Pati, Sarthak Payette, Kelly Sudre, Carole van Wijnen, Kimberlin Vardazaryan, Armine Vercauteren, Tom Wagner, Martin Wang, Chuanbo Yap, Moi Hoon Yu, Zeyun Yuan, Chun Zenk, Maximilian Zia, Aneeq Zimmerer, David Bao, Rina Choi, Chanyeol Cohen, Andrew Dzyubachyk, Oleh Galdran, Adrian Gan, Tianyuan Guo, Tianqi Gupta, Pradyumna Haithami, Mahmood Ho, Edward Jang, Ikbeom Li, Zhili Luo, Zhengbo Lux, Filip Makrogiannis, Sokratis Müller, Dominik Oh, Young-Tack Pang, Subeen Pape, Constantin Polat, Gorkem Reed, Charlotte Rosalie Ryu, Kanghyun Scherr, Tim Thambawita, Vajira Wang, Haoyu Wang, Xinliang Xu, Kele Yeh, Hung Yeo, Doyeob Yuan, Yixuan Zeng, Yan Zhao, Xin Abbing, Julian Adam, Jannes Adluru, Nagesh Agethen, Niklas Ahmed, Salman Al Khalil, Yasmina Alenyà, Mireia Alhoniemi, Esa An, Chengyang Arega, Tewodros Weldebirhan Avisdris, Netanell Aydogan, Dogu Baran Bai, Yingbin Calisto, Maria Baldeon Basaran, Berke Doga Beetz, Marcel Bian, Hao Blansit, Kevin Bloch, Louise Bohnsack, Robert Bosticardo, Sara Breen, Jack Brudfors, Mikael Brüngel, Raphael Cabezas, Mariano Cacciola, Alb Heidelberg Division of Intelligent Medical Systems Germany Heidelberg HI Helmholtz Imaging Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Heidelberg Division of Biostatistics Germany Heidelberg Division of Medical Image Computing Germany Heidelberg HI Applied Vision Lab Germany IT University of Copenhagen Copenhagen Denmark Centre for Biomedical Image Analysis Masaryk University Brno Czech Republic Heidelberg Interactive Machine Learning Group Germany Faculty of Mathematics and Computer Science and Medical Faculty Heidelberg University Heidelberg Germany NCT Heidelberg DKFZ University Hospital Heidelberg Germany School of Computing University of Leeds Leeds United Kingdom SBILab Department of ECE IIIT-Delhi India Faculty of Electrical Engineering Czech Technical University Prague Czech Republic Institute of Biomedical Engineering University of Oxford United Kingdom Center for Applied Medical Research Pamplona Spain Shri Guru Gobind Singhji Institute of Engineering and Technology Maharashtra Nanded India Université de Rouen Normandie France Lausanne Switzerland School of Engineering and Applied Science Harvard University United States ICube University of Strasbourg CNRS France Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Techno-Pôle 3 Sierre3960 Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Rue du Bugnon 46 LausanneCH-1011 Switzerland University of Pennsylvania PhiladelphiaPA United States Department of Radiology University of Washington United States Wellcome EPSRC Centre for Interventional and Surgical Sciences University College London London United Kingdom Visual Artificial Intelligence Lab Oxford Brookes University Oxford United Kingdom Universitat Autònoma de Barcelona & Computer Vision Center Spain Dresden Fetscherstraße 74 PF 64 Dresden01307 Germany
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bott... 详细信息
来源: 评论
Learning to Match Aerial Images with Deep Attentive Architectures
Learning to Match Aerial Images with Deep Attentive Architec...
收藏 引用
IEEE Conference on computer vision and Pattern Recognition
作者: Hani Altwaijry Eduard Trulls James Hays Pascal Fua Serge Belongie Department of Computer Science Cornell University Computer Vision Laboratory Ecole Polytechnique Federale de Lausanne (EPFL) School of Interactive Computing College of Computing Georgia Institute of Technology
Image matching is a fundamental problem in computer vision. In the context of feature-based matching, SIFT and its variants have long excelled in a wide array of applications. However, for ultra-wide baselines, as in ... 详细信息
来源: 评论