咨询与建议

限定检索结果

文献类型

  • 57 篇 期刊文献
  • 45 篇 会议

馆藏范围

  • 102 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 69 篇 工学
    • 52 篇 计算机科学与技术...
    • 45 篇 软件工程
    • 23 篇 生物工程
    • 21 篇 光学工程
    • 17 篇 信息与通信工程
    • 12 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 生物医学工程(可授...
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 3 篇 交通运输工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 农业工程
    • 2 篇 环境科学与工程(可...
  • 52 篇 理学
    • 23 篇 生物学
    • 19 篇 数学
    • 18 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 4 篇 化学
  • 17 篇 管理学
    • 9 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 教育学
  • 1 篇 农学

主题

  • 9 篇 deep learning
  • 6 篇 computer vision
  • 6 篇 training
  • 5 篇 semantics
  • 4 篇 object detection
  • 3 篇 three-dimensiona...
  • 3 篇 image segmentati...
  • 3 篇 predictive model...
  • 3 篇 feature extracti...
  • 3 篇 machine learning
  • 3 篇 estimation
  • 3 篇 solid modeling
  • 2 篇 task analysis
  • 2 篇 vectors
  • 2 篇 numerical simula...
  • 2 篇 duality
  • 2 篇 visualization
  • 2 篇 linear matrix in...
  • 2 篇 pixels
  • 2 篇 benchmarking

机构

  • 4 篇 computer vision ...
  • 4 篇 division of medi...
  • 3 篇 department of in...
  • 3 篇 centre for medic...
  • 3 篇 heidelberg divis...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 vision learning ...
  • 3 篇 munich center fo...
  • 3 篇 ihu strasbourg s...
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 interactive mach...
  • 3 篇 heidelberg
  • 2 篇 department of ph...
  • 2 篇 electrical engin...
  • 2 篇 school of mathem...
  • 2 篇 university of sc...
  • 2 篇 department of co...
  • 2 篇 institute of pub...

作者

  • 5 篇 jäger paul f.
  • 5 篇 isensee fabian
  • 5 篇 cremers daniel
  • 4 篇 zimmerer david
  • 4 篇 hare jonathon
  • 4 篇 reid ian
  • 4 篇 petersen jens
  • 4 篇 maier-hein klaus...
  • 4 篇 fleuret françois
  • 3 篇 bakas spyridon
  • 3 篇 galdran adrian
  • 3 篇 van ginneken bra...
  • 3 篇 wu yihong
  • 3 篇 françois fleuret
  • 3 篇 p. rapisarda
  • 3 篇 pollefeys marc
  • 3 篇 gall juergen
  • 3 篇 baumgartner mich...
  • 3 篇 rapisarda p.
  • 3 篇 carneiro gustavo

语言

  • 100 篇 英文
  • 2 篇 其他
检索条件"机构=Computer Vision and Learning Group"
102 条 记 录,以下是1-10 订阅
排序:
SliceFormer: Deep Dense Depth Estimation from a Single Indoor Omnidirectional Image Using a Slice-Based Transformer
SliceFormer: Deep Dense Depth Estimation from a Single Indoo...
收藏 引用
2024 International Conference on Electronics, Information, and Communication, ICEIC 2024
作者: Wu, Yihong Heng, Yuwen Niranjan, Mahesan Kim, Hansung School of Electronics and Computer Science University of Southampton Vision Learning and Control Research Group Southampton United Kingdom
In this research, we tackle the task of estimating depth from a single indoor omnidirectional image. Acknowledging gravity's critical influence in artificially constructed indoor environments, we process the input... 详细信息
来源: 评论
Depth Estimation for a Single Omnidirectional Image with Reversed-Gradient Warming-up Thresholds Discriminator  48
Depth Estimation for a Single Omnidirectional Image with Rev...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Wu, Yihong Heng, Yuwen Niranjan, Mahesan Kim, Hansung University of Southampton Vision Learning and Control Research Group School of Electronics and Computer Science United Kingdom
Depth estimation for single image using deep learning requires a large labelled depth dataset with various scenes for training. However, currently published omnidirectional depth datasets cover limited types of scenes... 详细信息
来源: 评论
On the Implementation of Baselines and Lightweight Conditional Model Extrapolation (LIMES) Under Class-Prior Shift  4th
On the Implementation of Baselines and Lightweight Condit...
收藏 引用
Fourth International Workshop on Reproducible Research in Pattern Recognition, RRPR 2022
作者: Tomaszewska, Paulina Lampert, Christoph H. Warsaw University of Technology Faculty of Mathematics and Information Science Warsaw Poland Machine Learning and Computer Vision Group Klosterneuburg Austria
This paper focuses on the implementation details of the baseline methods and a recent lightweight conditional model extrapolation algorithm LIMES [5] for streaming data under class-prior shift. LIMES achieves sup... 详细信息
来源: 评论
Generative Curricula for Multi-Agent Path Finding via Unsupervised and Reinforcement learning
收藏 引用
Journal of Artificial Intelligence Research 2025年 82卷 2471-2534页
作者: Phan, Thomy Phan, Timy Koenig, Sven University of Southern California Thomas Lord Department of Computer Science Los AngelesCA90089 United States LMU Munich Computer Vision & Learning Group School of Arts Munich80799 Germany University of California Irvine Department of Computer Science IrvineCA92697 United States
Multi-Agent Path Finding (MAPF) is the challenging problem of finding collision-free paths for multiple agents, which has a wide range of applications, such as automated warehouses, smart manufacturing, and traffic ma... 详细信息
来源: 评论
A Semiautomatic Image Processing-Based Method for Binary Segmentation of Lungs in Computed Tomography Images
收藏 引用
SN computer Science 2024年 第6期5卷 689页
作者: Ramos, Leo Pineda, Israel School of Mathematical and Computational Sciences Yachay Tech University Deep Learning for Autonomous Driving Robotics and Computer Vision (DeepARC) Research Group Yachay Tech University Kauel Inc. Computer Vision Center Universitat Autònoma de Barcelona College of Sciences and Engineering Universidad San Francisco de Quito
Precise biomedical image segmentation is pivotal in medical diagnosis and treatment. Among various methodologies, image processing-based techniques are useful due to their swift and consistent results, free from the d... 详细信息
来源: 评论
Enhancing Material Features Using Dynamic Backward Attention on Cross-Resolution Patches  33
Enhancing Material Features Using Dynamic Backward Attention...
收藏 引用
33rd British Machine vision Conference Proceedings, BMVC 2022
作者: Heng, Yuwen Wu, Yihong Dasmahapatra, Srinandan Kim, Hansung Vision Learning and Control Research Group School of Electronics and Computer Science University of Southampton Southampton United Kingdom
Recent studies in material segmentation crop the image into patches to force the network to learn material features from local visual clues. This design is based on the expectation that the contextually invariant feat... 详细信息
来源: 评论
Deep learning Approach for High Recall Pneumonia Classification with Swin Transformer and L2 Regularization  23
Deep Learning Approach for High Recall Pneumonia Classificat...
收藏 引用
8th International Conference on Sustainable Information Engineering and Technology, SIET 2023
作者: Pinasthika, Krisna Sofyanda, Erika Yussi Ulumiyah, Silfiatul Muflikhah, Lailil Computer Vision Research Group Brawijaya University Indonesia Technology Education Learning Research Group Brawijaya University Indonesia Information System Research Group Brawijaya University Indonesia Department of Informatics Engineering Brawijaya University Indonesia
Pneumonia is one of the lung infections that can be lethal to people. Pneumonia can be diagnosed by conducting an X-ray scan of the human chest. Even though X-ray scanning is straightforward, the process of identifyin... 详细信息
来源: 评论
Robust Autonomous Vehicle Pursuit Without Expert Steering Labels
收藏 引用
IEEE Robotics and Automation Letters 2023年 第10期8卷 6595-6602页
作者: Pan, Jiaxin Zhou, Changyao Gladkova, Mariia Khan, Qadeer Cremers, Daniel Technical University of Munich Computer Vision Group Garching85748 Germany Munich Data Science Institute Garching85748 Germany Munich Center for Machine Learning Munchen80333 Germany University of Oxford OxfordOX1 3AZ United Kingdom
In this work, we present a learning method for both lateral and longitudinal motion control of an ego-vehicle for the task of vehicle pursuit. The car being controlled does not have a pre-defined route, rather it reac... 详细信息
来源: 评论
SliceFormer: Deep Dense Depth Estimation from a Single Indoor Omnidirectional Image Using a Slice-Based Transformer
SliceFormer: Deep Dense Depth Estimation from a Single Indoo...
收藏 引用
International Conference on Electronics, Information and Communications (ICEIC)
作者: Yihong Wu Yuwen Heng Mahesan Niranjan Hansung Kim Vision Learning and Control Research Group School of Electronics and Computer Science University of Southampton Southampton United Kingdom
In this research, we tackle the task of estimating depth from a single indoor omnidirectional image. Acknowledging gravity's critical influence in artificially constructed indoor environments, we process the input...
来源: 评论
Data-Driven Dissipativity Analysis: Application of the Matrix S-Lemma
收藏 引用
IEEE Control Systems 2022年 第3期42卷 140-149页
作者: Van Waarde, Henk J. Camlibel, M. Kanat Rapisarda, Paolo Trentelman, Harry L. Bernoulli Institute for Mathematics Computer Science and Artificial Intelligence University of Groningen Groningen9747 AG Netherlands Vision Learning and Control Group of the University of Southampton SouthamptonSO17 1BJ United Kingdom
The concept of dissipativity, as introduced by Jan Willems, is one of the cornerstones of systems and control theory. Typically, dissipativity properties are verified by resorting to a mathematical model of the system... 详细信息
来源: 评论