咨询与建议

限定检索结果

文献类型

  • 57 篇 期刊文献
  • 47 篇 会议

馆藏范围

  • 104 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 69 篇 工学
    • 52 篇 计算机科学与技术...
    • 43 篇 软件工程
    • 23 篇 生物工程
    • 21 篇 光学工程
    • 19 篇 信息与通信工程
    • 12 篇 控制科学与工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 电气工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 土木工程
    • 2 篇 交通运输工程
    • 2 篇 农业工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
  • 52 篇 理学
    • 23 篇 生物学
    • 19 篇 数学
    • 18 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 4 篇 化学
  • 17 篇 管理学
    • 9 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 教育学
  • 1 篇 农学

主题

  • 8 篇 deep learning
  • 7 篇 training
  • 6 篇 computer vision
  • 5 篇 semantics
  • 4 篇 object detection
  • 4 篇 machine learning
  • 3 篇 three-dimensiona...
  • 3 篇 image segmentati...
  • 3 篇 predictive model...
  • 3 篇 feature extracti...
  • 3 篇 estimation
  • 3 篇 solid modeling
  • 2 篇 task analysis
  • 2 篇 anomaly detectio...
  • 2 篇 vectors
  • 2 篇 numerical simula...
  • 2 篇 duality
  • 2 篇 visualization
  • 2 篇 linear matrix in...
  • 2 篇 pixels

机构

  • 4 篇 computer vision ...
  • 4 篇 division of medi...
  • 3 篇 department of in...
  • 3 篇 centre for medic...
  • 3 篇 heidelberg divis...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 vision learning ...
  • 3 篇 munich center fo...
  • 3 篇 ihu strasbourg s...
  • 3 篇 centre for biome...
  • 3 篇 valeo vision sys...
  • 3 篇 interactive mach...
  • 3 篇 heidelberg
  • 2 篇 department of ph...
  • 2 篇 electrical engin...
  • 2 篇 school of mathem...
  • 2 篇 university of sc...
  • 2 篇 department of co...
  • 2 篇 institute of pub...

作者

  • 5 篇 jäger paul f.
  • 5 篇 isensee fabian
  • 5 篇 cremers daniel
  • 4 篇 zimmerer david
  • 4 篇 hare jonathon
  • 4 篇 reid ian
  • 4 篇 petersen jens
  • 4 篇 maier-hein klaus...
  • 4 篇 fleuret françois
  • 3 篇 bakas spyridon
  • 3 篇 galdran adrian
  • 3 篇 van ginneken bra...
  • 3 篇 wu yihong
  • 3 篇 françois fleuret
  • 3 篇 p. rapisarda
  • 3 篇 gall juergen
  • 3 篇 baumgartner mich...
  • 3 篇 qadeer khan
  • 3 篇 rapisarda p.
  • 3 篇 carneiro gustavo

语言

  • 99 篇 英文
  • 5 篇 其他
检索条件"机构=Computer Vision and Learning Group"
104 条 记 录,以下是91-100 订阅
排序:
Sample distillation for object detection and image classification  6
Sample distillation for object detection and image classific...
收藏 引用
6th Asian Conference on Machine learning, ACML 2014
作者: Canévet, Olivier Lefakis, Leonidas Fleuret, François Computer Vision and Learning group Idiap Research Institute Martigny Switzerland École Polytechnique Fédérale de Lausanne Lausanne Switzerland
We propose a novel approach to efficiently select informative samples for large-scale learning. Instead of directly feeding a learning algorithm with a very large amount of samples, as it is usually done to reach stat... 详细信息
来源: 评论
Efficient sample mining for object detection  6
Efficient sample mining for object detection
收藏 引用
6th Asian Conference on Machine learning, ACML 2014
作者: Canévet, Olivier Fleuret, François Computer Vision and Learning group Idiap Research Institute Martigny Switzerland École Polytechnique Fédérale de Lausanne Lausanne Switzerland
Object detectors based on the sliding window technique are usually trained in two successive steps: first, an initial classifier is trained on a population of positive samples (i.e. images of the object to detect) and... 详细信息
来源: 评论
LETHA: learning from high quality inputs for 3D pose estimation in low quality images  2
LETHA: Learning from high quality inputs for 3D pose estimat...
收藏 引用
2014 2nd International Conference on 3D vision, 3DV 2014
作者: Penate-Sanchez, Adrianrr Moreno-Noguer, Francesc Andrade-Cetto, Juan Fleuret, François Institut de Robòtica i Informàtica Industrial CSIC-UPC Barcelona Spain Computer Vision and Learning Group Idiap Research Institute Martigny Switzerland École Polytechnique Fédérale de Lausanne Lausanne Switzerland
We introduce LETHA (learning on Easy data, Test on Hard), a new learning paradigm consisting of building strong priors from high quality training data, and combining them with discriminative machine learning to deal w... 详细信息
来源: 评论
Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000-17: analysis for the Global Burden of Disease Study 2017 (vol 395, pg 1779, 2020)
收藏 引用
LANCET 2020年 第10239期395卷 1762-1762页
作者: Reiner, R. C., Jr. Hay, S., I Institute for Health Metrics and Evaluation University of Washington Seattle WA United States Department of Global Health School of Medicine University of Washington Seattle WA United States Department of Health Metrics Sciences School of Medicine University of Washington Seattle WA United States College of Health and Medical Sciences Haramaya University Harar Ethiopia Department of Epidemiology and Biostatistics Haramaya University Harar Ethiopia Department of Medical Laboratory Sciences Haramaya University Harar Ethiopia School of Nursing and Midwifery Haramaya University Harar Ethiopia School of Pharmacy Haramaya University Harar Ethiopia School of Public Health Haramaya University Harar Ethiopia Haramaya University Harar Ethiopia Advanced Diagnostic and Interventional Radiology Research Center Tehran University of Medical Sciences Tehran Iran Cancer Biology Research Center Tehran University of Medical Sciences Tehran Iran Cancer Research Institute Tehran University of Medical Sciences Tehran Iran Department of Economics and Management Sciences for Health Tehran University of Medical Sciences Tehran Iran Department of Environmental Health Engineering Tehran University of Medical Sciences Tehran Iran Department of Epidemiology and Biostatistics Tehran University of Medical Sciences Tehran Iran Department of Health Management and Economics Tehran University of Medical Sciences Tehran Iran Department of Microbiology Tehran University of Medical Sciences Tehran Iran Department of Pharmacology Tehran University of Medical Sciences Tehran Iran Digestive Diseases Research Institute Tehran University of Medical Sciences Tehran Iran Endocrinology and Metabolism Research Center Tehran University of Medical Sciences Tehran Iran Hematology-Oncology and Stem Cell Transplantation Research Center Tehran University of Medical Sciences Tehran Iran Iran National Institute of Health Research Tehran University of Medical Sciences Tehran Iran Metabolomics and
Summary Background Across low-income and middle-income countries (LMICs), one in ten deaths in children younger than 5 years is attributable to diarrhoea. The substantial between-country variation in both diarrhoea in...
来源: 评论
Improving tag transfer for image annotation using visual and semantic information
Improving tag transfer for image annotation using visual and...
收藏 引用
International Workshop on Content-Based Multimedia Indexing, CBMI
作者: Sergio Rodriguez-Vaamonde Lorenzo Torresani Koldo Espinosa Estibaliz Garrote Computer Vision Area-ICT/ESI Division TECNALIA Zamudio Spain Visual-Learning Group-CS Department Dartmouth College Hanover USA Multimedia Group-Communications Engineering Department University of the Basque Country Bilbao Spain
This paper addresses the problem of image annotation using a combination of visual and semantic information. Our model involves two stages: a Nearest Neighbor computation and a tag transfer stage that collects the fin... 详细信息
来源: 评论
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 Antwerp, Belgium. 15-20 July 2017 Abstracts
收藏 引用
BMC NEUROSCIENCE 2017年 第SUPPL 1期18卷 95-176页
作者: [Anonymous] Department of Neuroscience Yale University New Haven CT 06520 USA Department Physiology & Pharmacology SUNY Downstate Brooklyn NY 11203 USA NYU School of Engineering 6 MetroTech Center Brooklyn NY 11201 USA Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya Barcelona 08028 Spain Institut de Neurobiologie de la Méditerrannée (INMED) INSERM UMR901 Aix-Marseille Univ Marseille France Center of Neural Science New York University New York NY USA Aix-Marseille Univ INSERM INS Inst Neurosci Syst Marseille France Laboratoire de Physique Théorique et Modélisation CNRS UMR 8089 Université de Cergy-Pontoise 95300 Cergy-Pontoise Cedex France Department of Mathematics and Computer Science ENSAT Abdelmalek Essaadi’s University Tangier Morocco Laboratory of Natural Computation Department of Information and Electrical Engineering and Applied Mathematics University of Salerno 84084 Fisciano SA Italy Department of Medicine University of Salerno 84083 Lancusi SA Italy Dipartimento di Fisica Università degli Studi Aldo Moro Bari and INFN Sezione Di Bari Italy Data Analysis Department Ghent University Ghent Belgium Coma Science Group University of Liège Liège Belgium Cruces Hospital and Ikerbasque Research Center Bilbao Spain BIOtech Department of Industrial Engineering University of Trento and IRCS-PAT FBK 38010 Trento Italy Department of Data Analysis Ghent University Ghent 9000 Belgium The Wellcome Trust Centre for Neuroimaging University College London London WC1N 3BG UK Department of Electronic Engineering NED University of Engineering and Technology Karachi Pakistan Blue Brain Project École Polytechnique Fédérale de Lausanne Lausanne Switzerland Departement of Mathematics Swansea University Swansea Wales UK Laboratory for Topology and Neuroscience at the Brain Mind Institute École polytechnique fédérale de Lausanne Lausanne Switzerland Institute of Mathematics University of Aberdeen Aberdeen Scotland UK Department of Integrativ
来源: 评论
LETHA: learning from High Quality Inputs for 3D Pose Estimation in Low Quality Images
LETHA: Learning from High Quality Inputs for 3D Pose Estimat...
收藏 引用
International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT)
作者: Adrian Penate-Sanchez Francesc Moreno-Noguer Juan Andrade-Cetto François Fleuret Institut de Robòtica i Informàtica Industrial CSIC-UPC Barcelona Spain Computer Vision and Learning group Idiap research institute Martigny Switzerland Ecole Poly technique Federale de Lausanne Lausanne Switzerland
We introduce LETHA (learning on Easy data, Test on Hard), a new learning paradigm consisting of building strong priors from high quality training data, and combining them with discriminative machine learning to deal w... 详细信息
来源: 评论
Adaptive sampling for large scale boosting
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine learning Research 2014年 第1期15卷
作者: Kevin Murphy Bernhard Schölkopf Charles Dubout François Fleuret Google Computer Vision and Learning Group Idiap Research Institute Martigny Switzerland
Classical boosting algorithms, such as AdaBoost, build a strong classifier without concern for the computational cost. Some applications, in particular in computer vision, may involve millions of training examples and... 详细信息
来源: 评论
25th Annual Computational Neuroscience Meeting CNS-2016, Seogwipo City, South Korea, July 2-7, 2016 Abstracts
收藏 引用
BMC NEUROSCIENCE 2016年 第1期17卷 1-112页
作者: [Anonymous] Computational Neurobiology Laboratory The Salk Institute for Biological Studies San Diego USA UNIC CNRS Gif sur Yvette France The European Institute for Theoretical Neuroscience (EITN) Paris France ATR Computational Neuroscience Laboratories Kyoto Japan Krembil Research Institute University Health Network Toronto Canada Department of Physiology University of Toronto Toronto Canada Department of Medicine (Neurology) University of Toronto Toronto Canada Department of Physics University of New Hampshire Durham USA Department of Neurophysiology Nencki Institute of Experimental Biology Warsaw Poland Department of Theory Wigner Research Centre for Physics of the Hungarian Academy of Sciences Budapest Hungary Department of Mathematical Sciences KAIST Daejoen Republic of Korea Department of Mathematics University of Houston Houston USA Department of Biochemistry & Cell Biology and Institute of Biosciences and Bioengineering Rice University Houston USA Department of Biology and Biochemistry University of Houston Houston USA Grupo de Neurocomputación Biológica Dpto. de Ingeniería Informática Escuela Politécnica Superior Universidad Autónoma de Madrid Madrid Spain Department of Biological Sciences University of Southern California Los Angeles USA Center for Neuroscience Korea Institute of Science and Technology Seoul South Korea Department of Neurology Albert Einstein College of Medicine Bronx USA Center for Neuroscience KIST Seoul South Korea Department of Neuroscience University of Science and Technology Daejon South Korea Systems Neuroscience Group QIMR Berghofer Medical Research Institute Herston Australia Department of Psychology Yonsei University Seoul South Korea Department of Psychiatry Kyung Hee University Hospital at Gangdong Seoul South Korea Department of Psychiatry Veterans Administration Boston Healthcare System and Harvard Medical School Brockton USA Department of Electrical and Electronic Engineering The University of Melbourne Parkvil
A1 Functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mits...
来源: 评论
Brain tumor cell density estimation from multi-modal MR images based on a synthetic tumor growth model
Brain tumor cell density estimation from multi-modal MR imag...
收藏 引用
15th International Conference on Medical Image Computing and computer-Assisted Intervention, MICCAI 2012
作者: Geremia, Ezequiel Menze, Bjoern H. Prastawa, Marcel Weber, M.-A. Criminisi, Antonio Ayache, Nicholas Asclepios Research Project INRIA Sophia-Antipolis France Computer Science and Artificial Intelligence Laboratory MIT United States Computer Vision Laboratory ETH Zurich Switzerland Scientific Computing and Imaging Institute University of Utah United States Diagnostic and Interventional Radiology Heidelberg University Hospital Germany Machine Learning and Perception Group Microsoft Research Cambridge United Kingdom
This paper proposes to employ a detailed tumor growth model to synthesize labelled images which can then be used to train an efficient data-driven machine learning tumor predictor. Our MR image synthesis step generate... 详细信息
来源: 评论