咨询与建议

限定检索结果

文献类型

  • 57 篇 期刊文献
  • 45 篇 会议

馆藏范围

  • 102 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 69 篇 工学
    • 52 篇 计算机科学与技术...
    • 45 篇 软件工程
    • 23 篇 生物工程
    • 21 篇 光学工程
    • 17 篇 信息与通信工程
    • 12 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 生物医学工程(可授...
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 3 篇 交通运输工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 农业工程
    • 2 篇 环境科学与工程(可...
  • 52 篇 理学
    • 23 篇 生物学
    • 19 篇 数学
    • 18 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 4 篇 化学
  • 17 篇 管理学
    • 9 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 教育学
  • 1 篇 农学

主题

  • 9 篇 deep learning
  • 6 篇 computer vision
  • 6 篇 training
  • 5 篇 semantics
  • 4 篇 object detection
  • 3 篇 three-dimensiona...
  • 3 篇 image segmentati...
  • 3 篇 predictive model...
  • 3 篇 feature extracti...
  • 3 篇 machine learning
  • 3 篇 estimation
  • 3 篇 solid modeling
  • 2 篇 task analysis
  • 2 篇 vectors
  • 2 篇 numerical simula...
  • 2 篇 duality
  • 2 篇 visualization
  • 2 篇 linear matrix in...
  • 2 篇 pixels
  • 2 篇 benchmarking

机构

  • 4 篇 computer vision ...
  • 4 篇 division of medi...
  • 3 篇 department of in...
  • 3 篇 centre for medic...
  • 3 篇 heidelberg divis...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 vision learning ...
  • 3 篇 munich center fo...
  • 3 篇 ihu strasbourg s...
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 interactive mach...
  • 3 篇 heidelberg
  • 2 篇 department of ph...
  • 2 篇 electrical engin...
  • 2 篇 school of mathem...
  • 2 篇 university of sc...
  • 2 篇 department of co...
  • 2 篇 institute of pub...

作者

  • 5 篇 jäger paul f.
  • 5 篇 isensee fabian
  • 5 篇 cremers daniel
  • 4 篇 zimmerer david
  • 4 篇 hare jonathon
  • 4 篇 reid ian
  • 4 篇 petersen jens
  • 4 篇 maier-hein klaus...
  • 4 篇 fleuret françois
  • 3 篇 bakas spyridon
  • 3 篇 galdran adrian
  • 3 篇 van ginneken bra...
  • 3 篇 wu yihong
  • 3 篇 françois fleuret
  • 3 篇 p. rapisarda
  • 3 篇 pollefeys marc
  • 3 篇 gall juergen
  • 3 篇 baumgartner mich...
  • 3 篇 rapisarda p.
  • 3 篇 carneiro gustavo

语言

  • 100 篇 英文
  • 2 篇 其他
检索条件"机构=Computer Vision and Learning Group"
102 条 记 录,以下是41-50 订阅
排序:
Txt2Img-MHN: Remote Sensing Image Generation from Text Using Modern Hopfield Networks
arXiv
收藏 引用
arXiv 2022年
作者: Xu, Yonghao Yu, Weikang Ghamisi, Pedram Kopp, Michael Hochreiter, Sepp Vienna1030 Austria Computer Vision Laboratory Department of Electrical Engineering Linköping University Linköping58183 Sweden Helmholtz-Zentrum Dresden-Rossendorf Helmholtz Institute Freiberg for Resource Technology Machine Learning Group Freiberg09599 Germany ELLIS Unit Linz and LIT AI Lab Institute for Machine Learning Johannes Kepler University Linz4040 Austria
The synthesis of high-resolution remote sensing images based on text descriptions has great potential in many practical application scenarios. Although deep neural networks have achieved great success in many importan... 详细信息
来源: 评论
nnDetection: A Self-configuring Method for Medical Object Detection
arXiv
收藏 引用
arXiv 2021年
作者: Baumgartner, Michael Jäger, Paul F. Isensee, Fabian Maier-Hein, Klaus H. Division of Medical Image Computing German Cancer Research Center Heidelberg Germany Interactive Machine Learning Group German Cancer Research Center Germany HIP Applied Computer Vision Lab. German Cancer Research Center Germany Pattern Analysis and Learning Group Heidelberg University Hospital Germany
Simultaneous localisation and categorization of objects in medical images, also referred to as medical object detection, is of high clinical relevance because diagnostic decisions often depend on rating of objects rat... 详细信息
来源: 评论
Overcoming Rare-Language Discrimination in Multi-Lingual Sentiment Analysis
Overcoming Rare-Language Discrimination in Multi-Lingual Sen...
收藏 引用
IEEE International Conference on Big Data
作者: Jasmin Lampert Christoph H. Lampert Competence Unit Data Science & Artificial Intelligence AIT Austrian Institute of Technology Vienna Austria Machine Learning and Computer Vision Group Institute of Science and Technology Austria (IST Austria) Klosterneuburg Austria
The digitalization of almost all aspects of our everyday lives has led to unprecedented amounts of data being freely available on the Internet. In particular social media platforms provide rich sources of user-generat... 详细信息
来源: 评论
VICE: Variational Interpretable Concept Embeddings
arXiv
收藏 引用
arXiv 2022年
作者: Muttenthaler, Lukas Zheng, Charles Y. McClure, Patrick Vandermeulen, Robert A. Hebart, Martin N. Pereira, Francisco Machine Learning Group Technische Universität Berlin BIFOLD Berlin Germany Machine Learning Team FMRI Facility National Institute of Mental Health BethesdaMD United States Department of Computer Science Naval Postgraduate School MontereyCA United States Vision and Computational Cognition Group MPI for Human Cognitive and Brain Sciences Leipzig Germany The Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany The National Institute of Mental Health BethesdaMD United States
A central goal in the cognitive sciences is the development of numerical models for mental representations of object concepts. This paper introduces Variational Interpretable Concept Embeddings (VICE), an approximate ... 详细信息
来源: 评论
MOT20: A benchmark for multi object tracking in crowded scenes
arXiv
收藏 引用
arXiv 2020年
作者: Dendorfer, Patrick Rezatofighi, Hamid Milan, Anton Shi, Javen Cremers, Daniel Reid, Ian Roth, Stefan Schindler, Konrad Leal-Taixé, Laura Dynamic Vision and Learning Group at TUM Munich Germany Australian Institute for Machine Learning School of Computer Science University of Adelaide Amazon Berlin Germany Photogrammetry and Remote Sensing Group ETH Zurich Switzerland Computer Vision Group at TUM Munich Germany Department of Computer Science Technische Universität Darmstadt Germany
Standardized benchmarks are crucial for the majority of computer vision applications. Although leaderboards and ranking tables should not be over-claimed, benchmarks often provide the most objective measure of perform... 详细信息
来源: 评论
GP-CONVCNP: Better generalization for convolutional conditional neural processes on time series data
arXiv
收藏 引用
arXiv 2021年
作者: Petersen, Jens Köhler, Gregor Zimmerer, David Isensee, Fabian Jäger, Paul F. Maier-Hein, Klaus H. Division of Medical Image Computing German Cancer Research Center Heidelberg Germany HIP Applied Computer Vision Lab Division of Medical Image Computing German Cancer Research Center Interactive Machine Learning Group German Cancer Research Center
Neural Processes (NPs) are a family of conditional generative models that are able to model a distribution over functions, in a way that allows them to perform predictions at test time conditioned on a number of conte... 详细信息
来源: 评论
Predicting the pathogenicity of protein coding mutations using Natural Language Processing
Predicting the pathogenicity of protein coding mutations usi...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Naeem Rehmat Hammad Farooq Sanjay Kumar Sibt ul Hussain Hammad Naveed Computational Biology Research Lab (***) National University of Computer & Emerging Sciences Recognition Vision and Learning research group (ReVeaL) National University of Computer & Emerging Sciences
DNA-Sequencing of tumor cells has revealed thousands of genetic mutations. However, cancer is caused by only some of them. Identifying mutations that contribute to tumor growth from neutral ones is extremely challengi... 详细信息
来源: 评论
LEDNet: Deep Network for Single Image Haze Removal  2018
LEDNet: Deep Network for Single Image Haze Removal
收藏 引用
Proceedings of the 11th Indian Conference on computer vision, Graphics and Image Processing
作者: Akshay Dudhane Subrahmanyam Murala Abhinav Dhall Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar India Learning Affect and Semantic Image Analysis Group Indian Institute of Technology Ropar India
Haze during the bad weather, degrades the visibility of the scene drastically. Degradation of scene visibility varies with respect to the transmission coefficient/map (Tc) of the scene. Estimation of accurate Tc is ke... 详细信息
来源: 评论
On the Identification of Self-Adjoint Linear Time-Varying State Models
收藏 引用
IFAC-PapersOnLine 2018年 第15期51卷 251-256页
作者: Rapisarda, P. Vision Learning and Control Group School of Electronics and Computer Science University of Southampton United Kingdom
A novel approach to the identification of linear time-varying (LTV) systems is illustrated, based on the concept of duality. Generically, if N input-output trajectories (uk, yk), k = 1,…,N of a self-adjoint LTV syste... 详细信息
来源: 评论
Spatial and Colour Opponency in Anatomically Constrained Deep Networks
arXiv
收藏 引用
arXiv 2019年
作者: Harris, Ethan Mihai, Daniela Hare, Jonathon Vision Learning and Control Group Electronics and Computer Science University of Southampton
Colour vision has long fascinated scientists, who have sought to understand both the physiology of the mechanics of colour vision and the psychophysics of colour perception. We consider representations of colour in an... 详细信息
来源: 评论