咨询与建议

限定检索结果

文献类型

  • 57 篇 期刊文献
  • 45 篇 会议

馆藏范围

  • 102 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 69 篇 工学
    • 52 篇 计算机科学与技术...
    • 45 篇 软件工程
    • 24 篇 生物工程
    • 21 篇 光学工程
    • 17 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 土木工程
    • 4 篇 化学工程与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 交通运输工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 建筑学
    • 2 篇 农业工程
  • 52 篇 理学
    • 23 篇 生物学
    • 19 篇 数学
    • 18 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 4 篇 化学
  • 17 篇 管理学
    • 9 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 教育学
  • 1 篇 农学

主题

  • 9 篇 deep learning
  • 6 篇 computer vision
  • 6 篇 training
  • 5 篇 semantics
  • 4 篇 object detection
  • 3 篇 three-dimensiona...
  • 3 篇 image segmentati...
  • 3 篇 predictive model...
  • 3 篇 feature extracti...
  • 3 篇 machine learning
  • 3 篇 estimation
  • 3 篇 solid modeling
  • 2 篇 task analysis
  • 2 篇 vectors
  • 2 篇 numerical simula...
  • 2 篇 duality
  • 2 篇 visualization
  • 2 篇 linear matrix in...
  • 2 篇 pixels
  • 2 篇 benchmarking

机构

  • 4 篇 computer vision ...
  • 4 篇 division of medi...
  • 3 篇 department of in...
  • 3 篇 centre for medic...
  • 3 篇 heidelberg divis...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 vision learning ...
  • 3 篇 munich center fo...
  • 3 篇 ihu strasbourg s...
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 interactive mach...
  • 3 篇 heidelberg
  • 2 篇 department of ph...
  • 2 篇 electrical engin...
  • 2 篇 school of mathem...
  • 2 篇 university of sc...
  • 2 篇 department of co...
  • 2 篇 institute of pub...

作者

  • 5 篇 jäger paul f.
  • 5 篇 isensee fabian
  • 5 篇 cremers daniel
  • 4 篇 zimmerer david
  • 4 篇 hare jonathon
  • 4 篇 reid ian
  • 4 篇 petersen jens
  • 4 篇 maier-hein klaus...
  • 4 篇 fleuret françois
  • 3 篇 bakas spyridon
  • 3 篇 galdran adrian
  • 3 篇 van ginneken bra...
  • 3 篇 wu yihong
  • 3 篇 françois fleuret
  • 3 篇 p. rapisarda
  • 3 篇 pollefeys marc
  • 3 篇 gall juergen
  • 3 篇 baumgartner mich...
  • 3 篇 rapisarda p.
  • 3 篇 carneiro gustavo

语言

  • 101 篇 英文
  • 1 篇 其他
检索条件"机构=Computer Vision and Learning group"
102 条 记 录,以下是1-10 订阅
排序:
Generative Curricula for Multi-Agent Path Finding via Unsupervised and Reinforcement learning
收藏 引用
Journal of Artificial Intelligence Research 2025年 82卷 2471-2534页
作者: Phan, Thomy Phan, Timy Koenig, Sven University of Southern California Thomas Lord Department of Computer Science Los AngelesCA90089 United States LMU Munich Computer Vision & Learning Group School of Arts Munich80799 Germany University of California Irvine Department of Computer Science IrvineCA92697 United States
Multi-Agent Path Finding (MAPF) is the challenging problem of finding collision-free paths for multiple agents, which has a wide range of applications, such as automated warehouses, smart manufacturing, and traffic ma... 详细信息
来源: 评论
Achachay App: a community-driven innovation for flood data collection in urban and rural areas
Achachay App: a community-driven innovation for flood data c...
收藏 引用
International Conference on Technological Innovation and AI Research (ICTIAIR 2025)
作者: Ariana Deyaneira Jiménez-Narváez Jonathan Javier Loor-Duque Diego Josue Andrade-Pelaez Manuel Eugenio Morocho-Cayamcela Raisa Torres-Ramírez Deep Learning for Autonomous Driving Robotics and Computer Vision Research Group (DeepARC) School of Mathematical and Computational Sciences Yachay Tech University San Miguel de Urcuquí Ecuador Applied Geology and Research Group School of Geological Sciences Energy and Environment Yachay Tech University San Miguel de Urcuquí Ecuador
Floods are among the most frequent and devastating natural disasters, significantly impacting urban and rural communities worldwide. Achachay App is a mobile application designed to enhance flood data collection and a...
来源: 评论
AI-based predictive and detection models for Avian Pox caused by Avipoxvirus Spp in the Galápagos Islands
AI-based predictive and detection models for Avian Pox cause...
收藏 引用
International Conference on Technological Innovation and AI Research (ICTIAIR 2025)
作者: Jonathan Javier Loor-Duque Grace Rodríguez Ariana Deyaneira Jiménez-Narváez Juan David Moromenacho-Aguirre Fernando Patricio Carranco-Avila Clayanela Zambrano-Caicedo Iván Galo Reyes-Chacón Paulina Vizcaíno Manuel Eugenio Morocho-Cayamcela Yachay Tech University School of Mathematical and Computational Sciences Deep Learning for Autonomous Driving Robotics and Computer Vision Research Group DeepARC Research Urcuquí 100119 Ecuador Pontificia Universidad Católica del Ecuador Faculty of Exact and Natural Sciences Biology Quito Ecuador Universidad Internacional del Ecuador Faculty of Technical Sciences School of Computer Science Quito Ecuador
Predicting infection by Avipoxvirus spp, the causative agent of avian pox, in endemic Galápagos Islands species such as the Geospiza fuliginosafinches, represents an innovative approach to controlling viral disea...
来源: 评论
FrontierNet: learning Visual Cues to Explore
收藏 引用
IEEE Robotics and Automation Letters 2025年 第7期10卷 6576-6583页
作者: Sun, Boyang Chen, Hanzhi Leutenegger, Stefan Cadena, Cesar Pollefeys, Marc Blum, Hermann ETH Zurich Computer Vision and Geometry Group Zurich 8092 Switzerland Technical University of Munich Mobile Robotics Lab München 80333 Germany ETH Zurich Mobile Robotics Lab Zurich 8092 Switzerland ETH Zurich Robotic Systems Lab Zurich 8092 Switzerland AI Lab Microsoft Mixed Reality Zurich 8038 Switzerland University of Bonn Lamarr Institute for ML and AI Robot Perception and Learning Lab Bonn 53115 Germany
Exploration of unknown environments is crucial for autonomous robots;it allows them to actively reason and decide on what new data to acquire for different tasks, such as mapping, object discovery, and environmental a... 详细信息
来源: 评论
On the Identification of Self-Adjoint Linear Time-Varying State Models
收藏 引用
IFAC-PapersOnLine 2018年 第15期51卷 251-256页
作者: Rapisarda, P. Vision Learning and Control Group School of Electronics and Computer Science University of Southampton United Kingdom
A novel approach to the identification of linear time-varying (LTV) systems is illustrated, based on the concept of duality. Generically, if N input-output trajectories (uk, yk), k = 1,…,N of a self-adjoint LTV syste... 详细信息
来源: 评论
An evaluation of synthetic data for deep learning stereo depth algorithms  2017
An evaluation of synthetic data for deep learning stereo dep...
收藏 引用
2017 International Conference on Watermarking and Image Processing, ICWIP 2017
作者: Lee, Kevin Moloney, David Computer Vision and Machine Learning Group Intel/Movidius United States
Stereo vision is a very active field in the realm of computer vision and in recent years Convolutional Neural Networks (CNNs) have proven to be very competitive against the state-of-the-art. However, the performance o... 详细信息
来源: 评论
A Gröbner Basis Approach to Solve a Rank Minimization Problem Arising in 2D-identification
收藏 引用
IFAC-PapersOnLine 2017年 第1期50卷 1834-1839页
作者: Rapisarda P. Vision Learning and Control Group School of Electronics and Computer Science University of Southampton United Kingdom
The problem of state-space modelling of 2D-trajectories from exponential data can be solved using a duality approach. Finding a minimal complexity model, i.e. one having the minimal number of state variables among tho... 详细信息
来源: 评论
Cross-dimensional weighting for aggregated deep convolutional features  14
Cross-dimensional weighting for aggregated deep convolutiona...
收藏 引用
computer vision - ECCV 2016 Workshops, Proceedings
作者: Kalantidis, Yannis Mellina, Clayton Osindero, Simon Computer Vision and Machine Learning Group Flickr Yahoo San Francisco United States
We propose a simple and straightforward way of creating powerful image representations via cross-dimensional weighting and aggregation of deep convolutional neural network layer outputs. We first present a generalized... 详细信息
来源: 评论
Depth Estimation for a Single Omnidirectional Image with Reversed-Gradient Warming-up Thresholds Discriminator  48
Depth Estimation for a Single Omnidirectional Image with Rev...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Wu, Yihong Heng, Yuwen Niranjan, Mahesan Kim, Hansung University of Southampton Vision Learning and Control Research Group School of Electronics and Computer Science United Kingdom
Depth estimation for single image using deep learning requires a large labelled depth dataset with various scenes for training. However, currently published omnidirectional depth datasets cover limited types of scenes... 详细信息
来源: 评论
Bilkent University at TRECVID 2007
Bilkent University at TRECVID 2007
收藏 引用
TREC Video Retrieval Evaluation, TRECVID 2007
作者: Aksoy, S. Duygulu, P. Aksoy, C. Aydin, E. Günaydin, D. Hadimli, K. Koç, L. Olgun, Y. Orhan, C. Yakin, G. RETINA Vision and Learning Group Department of Computer Engineering Bilkent University Bilkent 06800 Ankara Turkey
We describe our fourth participation, that includes two high-level feature extraction runs, and one manual search run, to the TRECVID video retrieval evaluation. All of these runs have used a system trained on the com...
来源: 评论