咨询与建议

限定检索结果

文献类型

  • 57 篇 期刊文献
  • 45 篇 会议

馆藏范围

  • 102 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 69 篇 工学
    • 52 篇 计算机科学与技术...
    • 45 篇 软件工程
    • 24 篇 生物工程
    • 21 篇 光学工程
    • 17 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 土木工程
    • 4 篇 化学工程与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 交通运输工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 建筑学
    • 2 篇 农业工程
  • 52 篇 理学
    • 23 篇 生物学
    • 19 篇 数学
    • 18 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 4 篇 化学
  • 17 篇 管理学
    • 9 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 教育学
  • 1 篇 农学

主题

  • 9 篇 deep learning
  • 6 篇 computer vision
  • 6 篇 training
  • 5 篇 semantics
  • 4 篇 object detection
  • 3 篇 three-dimensiona...
  • 3 篇 image segmentati...
  • 3 篇 predictive model...
  • 3 篇 feature extracti...
  • 3 篇 machine learning
  • 3 篇 estimation
  • 3 篇 solid modeling
  • 2 篇 task analysis
  • 2 篇 vectors
  • 2 篇 numerical simula...
  • 2 篇 duality
  • 2 篇 visualization
  • 2 篇 linear matrix in...
  • 2 篇 pixels
  • 2 篇 benchmarking

机构

  • 4 篇 computer vision ...
  • 4 篇 division of medi...
  • 3 篇 department of in...
  • 3 篇 centre for medic...
  • 3 篇 heidelberg divis...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 vision learning ...
  • 3 篇 munich center fo...
  • 3 篇 ihu strasbourg s...
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 interactive mach...
  • 3 篇 heidelberg
  • 2 篇 department of ph...
  • 2 篇 electrical engin...
  • 2 篇 school of mathem...
  • 2 篇 university of sc...
  • 2 篇 department of co...
  • 2 篇 institute of pub...

作者

  • 5 篇 jäger paul f.
  • 5 篇 isensee fabian
  • 5 篇 cremers daniel
  • 4 篇 zimmerer david
  • 4 篇 hare jonathon
  • 4 篇 reid ian
  • 4 篇 petersen jens
  • 4 篇 maier-hein klaus...
  • 4 篇 fleuret françois
  • 3 篇 bakas spyridon
  • 3 篇 galdran adrian
  • 3 篇 van ginneken bra...
  • 3 篇 wu yihong
  • 3 篇 françois fleuret
  • 3 篇 p. rapisarda
  • 3 篇 pollefeys marc
  • 3 篇 gall juergen
  • 3 篇 baumgartner mich...
  • 3 篇 rapisarda p.
  • 3 篇 carneiro gustavo

语言

  • 101 篇 英文
  • 1 篇 其他
检索条件"机构=Computer Vision and Learning group"
102 条 记 录,以下是11-20 订阅
排序:
Bilkent university at TRECVID 2006
Bilkent university at TRECVID 2006
收藏 引用
TREC Video Retrieval Evaluation, TRECVID 2006
作者: Aksoy, S. Duygulu, P. Akçay, G. Ataer, E. Baştan, M. Can, T. Cavuş, Ö. Doǧgrusöz, E. Gökalp, D. Akaydin, A. Akoǧlu, L. Angin, P. Cinbiş, G. Gür, T. Ünlü, M. RETINA Vision and Learning Group Department of Computer Engineering Bilkent University Bilkent 06800 Ankara Turkey
We describe our third participation, that includes one high-level feature extraction run, and two manual and one interactive search runs, to the TRECVID video retrieval evaluation. All of these runs have used a system...
来源: 评论
Augmented reality meets deep learning for car instance segmentation in urban scenes  28
Augmented reality meets deep learning for car instance segme...
收藏 引用
28th British Machine vision Conference, BMVC 2017
作者: Alhaija, Hassan Abu Mustikovela, Siva Karthik Mescheder, Lars Geiger, Andreas Rother, Carsten Computer Vision Lab. TU Dresden Germany Visual Learning Lab. Heidelberg University Germany Autonomous Vision Group MPI-IS Tübingen Germany Computer Vision and Geometry Group ETH Zürich Switzerland
The success of deep learning in computer vision is based on the availability of large annotated datasets. To lower the need for hand labeled images, virtually rendered 3D worlds have recently gained popularity. Unfort... 详细信息
来源: 评论
Enhancing Material Features Using Dynamic Backward Attention on Cross-Resolution Patches  33
Enhancing Material Features Using Dynamic Backward Attention...
收藏 引用
33rd British Machine vision Conference Proceedings, BMVC 2022
作者: Heng, Yuwen Wu, Yihong Dasmahapatra, Srinandan Kim, Hansung Vision Learning and Control Research Group School of Electronics and Computer Science University of Southampton Southampton United Kingdom
Recent studies in material segmentation crop the image into patches to force the network to learn material features from local visual clues. This design is based on the expectation that the contextually invariant feat... 详细信息
来源: 评论
SliceFormer: Deep Dense Depth Estimation from a Single Indoor Omnidirectional Image Using a Slice-Based Transformer
SliceFormer: Deep Dense Depth Estimation from a Single Indoo...
收藏 引用
2024 International Conference on Electronics, Information, and Communication, ICEIC 2024
作者: Wu, Yihong Heng, Yuwen Niranjan, Mahesan Kim, Hansung School of Electronics and Computer Science University of Southampton Vision Learning and Control Research Group Southampton United Kingdom
In this research, we tackle the task of estimating depth from a single indoor omnidirectional image. Acknowledging gravity's critical influence in artificially constructed indoor environments, we process the input... 详细信息
来源: 评论
On the Implementation of Baselines and Lightweight Conditional Model Extrapolation (LIMES) Under Class-Prior Shift  4th
On the Implementation of Baselines and Lightweight Condit...
收藏 引用
Fourth International Workshop on Reproducible Research in Pattern Recognition, RRPR 2022
作者: Tomaszewska, Paulina Lampert, Christoph H. Warsaw University of Technology Faculty of Mathematics and Information Science Warsaw Poland Machine Learning and Computer Vision Group Klosterneuburg Austria
This paper focuses on the implementation details of the baseline methods and a recent lightweight conditional model extrapolation algorithm LIMES [5] for streaming data under class-prior shift. LIMES achieves sup... 详细信息
来源: 评论
On Higher-order Linear Port-Hamiltonian Systems and Their Duals
收藏 引用
IFAC-PapersOnLine 2017年 第1期50卷 9236-9241页
作者: Rapisarda P. Maldonado J.C.M. Vision Learning and Control Group School of Electronics and Computer Science University of Southampton United Kingdom School of Engineering and Sciences Tecnologico de Monterrey Mexico
We formulate a behavioral approach to higher-order linear port-Hamiltonian systems. We formalize constitutive laws such as power conservation, storage and (anti-)dissipative relations, and we study several properties ... 详细信息
来源: 评论
Sample distillation for object detection and image classification  6
Sample distillation for object detection and image classific...
收藏 引用
6th Asian Conference on Machine learning, ACML 2014
作者: Canévet, Olivier Lefakis, Leonidas Fleuret, François Computer Vision and Learning group Idiap Research Institute Martigny Switzerland École Polytechnique Fédérale de Lausanne Lausanne Switzerland
We propose a novel approach to efficiently select informative samples for large-scale learning. Instead of directly feeding a learning algorithm with a very large amount of samples, as it is usually done to reach stat... 详细信息
来源: 评论
Efficient sample mining for object detection  6
Efficient sample mining for object detection
收藏 引用
6th Asian Conference on Machine learning, ACML 2014
作者: Canévet, Olivier Fleuret, François Computer Vision and Learning group Idiap Research Institute Martigny Switzerland École Polytechnique Fédérale de Lausanne Lausanne Switzerland
Object detectors based on the sliding window technique are usually trained in two successive steps: first, an initial classifier is trained on a population of positive samples (i.e. images of the object to detect) and... 详细信息
来源: 评论
Data-Driven Dissipativity Analysis: Application of the Matrix S-Lemma
收藏 引用
IEEE Control Systems 2022年 第3期42卷 140-149页
作者: Van Waarde, Henk J. Camlibel, M. Kanat Rapisarda, Paolo Trentelman, Harry L. Bernoulli Institute for Mathematics Computer Science and Artificial Intelligence University of Groningen Groningen9747 AG Netherlands Vision Learning and Control Group of the University of Southampton SouthamptonSO17 1BJ United Kingdom
The concept of dissipativity, as introduced by Jan Willems, is one of the cornerstones of systems and control theory. Typically, dissipativity properties are verified by resorting to a mathematical model of the system... 详细信息
来源: 评论
Modeling and analysis of energy distribution networks using switched differential systems  1
收藏 引用
Workshop on Mathematical Systems Theory: From Behaviors to Nonlinear Control, 2015
作者: Mayo-Maldonado, Jonathan C. Rapisarda, Paolo Vision Learning and Control Group School of Electronics and Computer Science University of Southampton SouthamptonSO17 1BJ United Kingdom
It is a pleasure to dedicate this contribution to Prof. Arjan van der Schaft on the occasion of his 60th birthday. We study the dynamics of energy distribution networks consisting of switching power converters and mul... 详细信息
来源: 评论