咨询与建议

限定检索结果

文献类型

  • 57 篇 期刊文献
  • 45 篇 会议

馆藏范围

  • 102 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 69 篇 工学
    • 52 篇 计算机科学与技术...
    • 45 篇 软件工程
    • 24 篇 生物工程
    • 21 篇 光学工程
    • 17 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 土木工程
    • 4 篇 化学工程与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 交通运输工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 建筑学
    • 2 篇 农业工程
  • 52 篇 理学
    • 23 篇 生物学
    • 19 篇 数学
    • 18 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 4 篇 化学
  • 17 篇 管理学
    • 9 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 教育学
  • 1 篇 农学

主题

  • 9 篇 deep learning
  • 6 篇 computer vision
  • 6 篇 training
  • 5 篇 semantics
  • 4 篇 object detection
  • 3 篇 three-dimensiona...
  • 3 篇 image segmentati...
  • 3 篇 predictive model...
  • 3 篇 feature extracti...
  • 3 篇 machine learning
  • 3 篇 estimation
  • 3 篇 solid modeling
  • 2 篇 task analysis
  • 2 篇 vectors
  • 2 篇 numerical simula...
  • 2 篇 duality
  • 2 篇 visualization
  • 2 篇 linear matrix in...
  • 2 篇 pixels
  • 2 篇 benchmarking

机构

  • 4 篇 computer vision ...
  • 4 篇 division of medi...
  • 3 篇 department of in...
  • 3 篇 centre for medic...
  • 3 篇 heidelberg divis...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 vision learning ...
  • 3 篇 munich center fo...
  • 3 篇 ihu strasbourg s...
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 interactive mach...
  • 3 篇 heidelberg
  • 2 篇 department of ph...
  • 2 篇 electrical engin...
  • 2 篇 school of mathem...
  • 2 篇 university of sc...
  • 2 篇 department of co...
  • 2 篇 institute of pub...

作者

  • 5 篇 jäger paul f.
  • 5 篇 isensee fabian
  • 5 篇 cremers daniel
  • 4 篇 zimmerer david
  • 4 篇 hare jonathon
  • 4 篇 reid ian
  • 4 篇 petersen jens
  • 4 篇 maier-hein klaus...
  • 4 篇 fleuret françois
  • 3 篇 bakas spyridon
  • 3 篇 galdran adrian
  • 3 篇 van ginneken bra...
  • 3 篇 wu yihong
  • 3 篇 françois fleuret
  • 3 篇 p. rapisarda
  • 3 篇 pollefeys marc
  • 3 篇 gall juergen
  • 3 篇 baumgartner mich...
  • 3 篇 rapisarda p.
  • 3 篇 carneiro gustavo

语言

  • 101 篇 英文
  • 1 篇 其他
检索条件"机构=Computer Vision and Learning group"
102 条 记 录,以下是31-40 订阅
排序:
Click-Free, Video-Based Document Capture - Methodology and Evaluation
Click-Free, Video-Based Document Capture - Methodology and E...
收藏 引用
International Conference on Document Analysis and Recognition
作者: Waqas Tariq Nazar Khan Computer Vision & Machine Learning Group Punjab University College of Information Technology Lahore Pakistan
We propose a click-free method for video-based digitization of multi-page documents. The work is targeted at the non-commercial, low-volume, home user. The document is viewed through a mounted camera and the user is o... 详细信息
来源: 评论
Torchbearer: A model fitting library for PyTorch
arXiv
收藏 引用
arXiv 2018年
作者: Harris, Ethan Painter, Matthew Hare, Jonathon Vision Learning and Control Group Department of Electronics and Computer Science University of Southampton United Kingdom
We introduce torchbearer, a model fitting library for pytorch aimed at researchers working on deep learning or differentiable programming. The torchbearer library provides a high level metric and callback API that can... 详细信息
来源: 评论
Depth Estimation for a Single Omnidirectional Image with Reversed-Gradient Warming-up Thresholds Discriminator
Depth Estimation for a Single Omnidirectional Image with Rev...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Yihong Wu Yuwen Heng Mahesan Niranjan Hansung Kim Vision Learning and Control Research Group School of Electronics and Computer Science University of Southampton UK
Depth estimation for single image using deep learning requires a large labelled depth dataset with various scenes for training. However, currently published omnidirectional depth datasets cover limited types of scenes... 详细信息
来源: 评论
Mask3D: Mask Transformer for 3D Semantic Instance Segmentation
Mask3D: Mask Transformer for 3D Semantic Instance Segmentati...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Jonas Schult Francis Engelmann Alexander Hermans Or Litany Siyu Tang Bastian Leibe Computer Vision Group RWTH Aachen University Germany Computer Vision and Learning Group ETH Zürich Switzerland ETH AI Center Zürich Switzerland NVIDIA Santa Clara USA
Modern 3D semantic instance segmentation approaches predominantly rely on specialized voting mechanisms followed by carefully designed geometric clustering techniques. Building on the successes of recent Transformer-b...
来源: 评论
LETHA: learning from high quality inputs for 3D pose estimation in low quality images  2
LETHA: Learning from high quality inputs for 3D pose estimat...
收藏 引用
2014 2nd International Conference on 3D vision, 3DV 2014
作者: Penate-Sanchez, Adrianrr Moreno-Noguer, Francesc Andrade-Cetto, Juan Fleuret, François Institut de Robòtica i Informàtica Industrial CSIC-UPC Barcelona Spain Computer Vision and Learning Group Idiap Research Institute Martigny Switzerland École Polytechnique Fédérale de Lausanne Lausanne Switzerland
We introduce LETHA (learning on Easy data, Test on Hard), a new learning paradigm consisting of building strong priors from high quality training data, and combining them with discriminative machine learning to deal w... 详细信息
来源: 评论
SliceFormer: Deep Dense Depth Estimation from a Single Indoor Omnidirectional Image Using a Slice-Based Transformer
SliceFormer: Deep Dense Depth Estimation from a Single Indoo...
收藏 引用
International Conference on Electronics, Information and Communications (ICEIC)
作者: Yihong Wu Yuwen Heng Mahesan Niranjan Hansung Kim Vision Learning and Control Research Group School of Electronics and Computer Science University of Southampton Southampton United Kingdom
In this research, we tackle the task of estimating depth from a single indoor omnidirectional image. Acknowledging gravity's critical influence in artificially constructed indoor environments, we process the input...
来源: 评论
RayNet: learning volumetric 3d reconstruction with ray potentials
arXiv
收藏 引用
arXiv 2019年
作者: Paschalidou, Despoina Ulusoy, Ali Osman Schmitt, Carolin Van Gool, Luc Geiger, Andreas Autonomous Vision Group MPI for Intelligent Systems Tübingen Microsoft Computer Vision Lab ETH Zürich KU Leuven Computer Vision and Geometry Group ETH Zürich Max Planck ETH Center for Learning Systems
In this paper, we consider the problem of reconstructing a dense 3D model using images captured from different views. Recent methods based on convolutional neural networks (CNN) allow learning the entire task from dat... 详细信息
来源: 评论
Multi-Vehicle Trajectory Prediction at Intersections using State and Intention Information
arXiv
收藏 引用
arXiv 2023年
作者: Zhu, Dekai Khan, Qadeer Cremers, Daniel Computer Vision Group CIT Technical University of Munich This work was funded by the Munich Center for Machine Learning Germany
Traditional approaches to prediction of future trajectory of road agents rely on knowing information about their past trajectory. This work rather relies only on having knowledge of the current state and intended dire... 详细信息
来源: 评论
Mask3D: Mask Transformer for 3D Semantic Instance Segmentation
arXiv
收藏 引用
arXiv 2022年
作者: Schult, Jonas Engelmann, Francis Hermans, Alexander Litany, Or Tang, Siyu Leibe, Bastian Computer Vision Group RWTH Aachen University Germany Computer Vision and Learning Group ETH Zürich Switzerland ETH AI Center Zürich Switzerland NVIDIA Santa Clara United States
Modern 3D semantic instance segmentation approaches predominantly rely on specialized voting mechanisms followed by carefully designed geometric clustering techniques. Building on the successes of recent Transformer-b... 详细信息
来源: 评论
Spatially Perturbed Collision Sounds Attenuate Perceived Causality in 3D Launching Events
Spatially Perturbed Collision Sounds Attenuate Perceived Cau...
收藏 引用
IEEE Annual International Symposium Virtual Reality
作者: Duotun Wang James Kubrlcht Yixin Zhu Wei Lianq Song-Chun Zhu Chenfanfu Jiang Hongjing Lu Laboratory of Intelligent Information Technology Beijing Institute of Technology UCLA Computational Vision and Learning Laboratory Cognition Center for Vision Computer Graphics Group UPenn
When a moving object collides with an object at rest, people immediately perceive a causal event: i.e., the first object has launched the second object forwards. However, when the second object's motion is delayed... 详细信息
来源: 评论