咨询与建议

限定检索结果

文献类型

  • 57 篇 期刊文献
  • 45 篇 会议

馆藏范围

  • 102 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 69 篇 工学
    • 52 篇 计算机科学与技术...
    • 45 篇 软件工程
    • 24 篇 生物工程
    • 21 篇 光学工程
    • 17 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 土木工程
    • 4 篇 化学工程与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 交通运输工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 建筑学
    • 2 篇 农业工程
  • 52 篇 理学
    • 23 篇 生物学
    • 19 篇 数学
    • 18 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 4 篇 化学
  • 17 篇 管理学
    • 9 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 教育学
  • 1 篇 农学

主题

  • 9 篇 deep learning
  • 6 篇 computer vision
  • 6 篇 training
  • 5 篇 semantics
  • 4 篇 object detection
  • 3 篇 three-dimensiona...
  • 3 篇 image segmentati...
  • 3 篇 predictive model...
  • 3 篇 feature extracti...
  • 3 篇 machine learning
  • 3 篇 estimation
  • 3 篇 solid modeling
  • 2 篇 task analysis
  • 2 篇 vectors
  • 2 篇 numerical simula...
  • 2 篇 duality
  • 2 篇 visualization
  • 2 篇 linear matrix in...
  • 2 篇 pixels
  • 2 篇 benchmarking

机构

  • 4 篇 computer vision ...
  • 4 篇 division of medi...
  • 3 篇 department of in...
  • 3 篇 centre for medic...
  • 3 篇 heidelberg divis...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 vision learning ...
  • 3 篇 munich center fo...
  • 3 篇 ihu strasbourg s...
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 interactive mach...
  • 3 篇 heidelberg
  • 2 篇 department of ph...
  • 2 篇 electrical engin...
  • 2 篇 school of mathem...
  • 2 篇 university of sc...
  • 2 篇 department of co...
  • 2 篇 institute of pub...

作者

  • 5 篇 jäger paul f.
  • 5 篇 isensee fabian
  • 5 篇 cremers daniel
  • 4 篇 zimmerer david
  • 4 篇 hare jonathon
  • 4 篇 reid ian
  • 4 篇 petersen jens
  • 4 篇 maier-hein klaus...
  • 4 篇 fleuret françois
  • 3 篇 bakas spyridon
  • 3 篇 galdran adrian
  • 3 篇 van ginneken bra...
  • 3 篇 wu yihong
  • 3 篇 françois fleuret
  • 3 篇 p. rapisarda
  • 3 篇 pollefeys marc
  • 3 篇 gall juergen
  • 3 篇 baumgartner mich...
  • 3 篇 rapisarda p.
  • 3 篇 carneiro gustavo

语言

  • 101 篇 英文
  • 1 篇 其他
检索条件"机构=Computer Vision and Learning group"
102 条 记 录,以下是51-60 订阅
排序:
CR3DT: Camera-RADAR Fusion for 3D Detection and Tracking
arXiv
收藏 引用
arXiv 2024年
作者: Baumann, Nicolas Baumgartner, Michael Ghignone, Edoardo Kühne, Jonas Fischer, Tobias Yang, Yung-Hsu Pollefeys, Marc Magno, Michele The Center for Project-Based Learning D-ITET ETH Zurich Switzerland The Computer Vision and Geometry Group D-INFK ETH Zurich Switzerland
To enable self-driving vehicles accurate detection and tracking of surrounding objects is essential. While Light Detection and Ranging (LiDAR) sensors have set the benchmark for high-performance systems, the appeal of... 详细信息
来源: 评论
Brain tumor cell density estimation from multi-modal MR images based on a synthetic tumor growth model
Brain tumor cell density estimation from multi-modal MR imag...
收藏 引用
15th International Conference on Medical Image Computing and computer-Assisted Intervention, MICCAI 2012
作者: Geremia, Ezequiel Menze, Bjoern H. Prastawa, Marcel Weber, M.-A. Criminisi, Antonio Ayache, Nicholas Asclepios Research Project INRIA Sophia-Antipolis France Computer Science and Artificial Intelligence Laboratory MIT United States Computer Vision Laboratory ETH Zurich Switzerland Scientific Computing and Imaging Institute University of Utah United States Diagnostic and Interventional Radiology Heidelberg University Hospital Germany Machine Learning and Perception Group Microsoft Research Cambridge United Kingdom
This paper proposes to employ a detailed tumor growth model to synthesize labelled images which can then be used to train an efficient data-driven machine learning tumor predictor. Our MR image synthesis step generate... 详细信息
来源: 评论
How to Choose a Reinforcement-learning Algorithm
arXiv
收藏 引用
arXiv 2024年
作者: Bongratz, Fabian Golkov, Vladimir Mautner, Lukas Libera, Luca Della Heetmeyer, Frederik Czaja, Felix Rodemann, Julian Cremers, Daniel Computer Vision Group Technical University of Munich Germany Munich Center for Machine Learning Germany Department of Statistics Ludwig-Maximilians-Universität Munich Germany
The field of reinforcement learning offers a large variety of concepts and methods to tackle sequential decision-making problems. This variety has become so large that choosing an algorithm for a task at hand can be c... 详细信息
来源: 评论
Reinforced imitation: Sample efficient deep reinforcement learning for map-less navigation by leveraging prior demonstrations
arXiv
收藏 引用
arXiv 2018年
作者: Pfeiffer, M. Shukla, S. Turchetta, M. Cadena, C. Krause, A. Siegwart, R. Nieto, J. Autonomous Systems Lab Zurich Switzerland Computer Vision Lab Zurich Switzerland Learning & Adaptive Systems Group Zurich Switzerland Max Planck ETH Center for Learning Systems ETH Zurich Zurich Switzerland
This work presents a case study of a learning-based approach for target driven map-less navigation. The underlying navigation model is an end-to-end neural network which is trained using a combination of expert demons... 详细信息
来源: 评论
Deep deterministic uncertainty for semantic segmentation
arXiv
收藏 引用
arXiv 2021年
作者: Mukhoti, Jishnu van Amersfoort, Joost Torr, Philip H.S. Gal, Yarin Oxford Applied & Theoretical Machine Learning Group Department of Computer Science University of Oxford Oxford United Kingdom Torr Vision Group Department of Engineering Science University of Oxford Oxford United Kingdom
We extend Deep Deterministic Uncertainty (DDU) (Mukhoti et al., 2021), a method for uncertainty estimation using feature space densities, to semantic segmentation. DDU enables quantifying and disentangling epistemic a... 详细信息
来源: 评论
LEDNet: Deep Network for Single Image Haze Removal  2018
LEDNet: Deep Network for Single Image Haze Removal
收藏 引用
Proceedings of the 11th Indian Conference on computer vision, Graphics and Image Processing
作者: Akshay Dudhane Subrahmanyam Murala Abhinav Dhall Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar India Learning Affect and Semantic Image Analysis Group Indian Institute of Technology Ropar India
Haze during the bad weather, degrades the visibility of the scene drastically. Degradation of scene visibility varies with respect to the transmission coefficient/map (Tc) of the scene. Estimation of accurate Tc is ke... 详细信息
来源: 评论
Fréchet Wavelet Distance: A Domain-Agnostic Metric for Image Generation
arXiv
收藏 引用
arXiv 2023年
作者: Veeramacheneni, Lokesh Wolter, Moritz Kuehne, Hildegard Gall, Juergen High-Performance Computing and Analytics Lab University of Bonn Bonn53115 Germany Multimodal Learning Group University of Bonn Bonn53115 Germany Computer Vision Group University of Bonn Bonn53115 Germany
Modern metrics for generative learning like Fréchet Inception Distance (FID) demonstrate impressive performance. However, they suffer from various shortcomings, like a bias towards specific generators and dataset... 详细信息
来源: 评论
Fault detection and isolation for systems defined over graphs
Fault detection and isolation for systems defined over graph...
收藏 引用
IEEE Annual Conference on Decision and Control
作者: P. Rapisarda A.R.F. Everts M.K. Camlibel Vision Learning and Control group School of Electronics and Computer Science University of Southampton UK Johann Bernoulli Institute for Mathematics and Computer Science University of Groningen P.O. Box 407 9700 AK the Netherlands
We consider the problem of fault detection and isolation for a class of linear dynamical systems defined by a graph containing faulty vertices and observer vertices. Using a geometric approach, we provide a characteri... 详细信息
来源: 评论
Improving tag transfer for image annotation using visual and semantic information
Improving tag transfer for image annotation using visual and...
收藏 引用
International Workshop on Content-Based Multimedia Indexing, CBMI
作者: Sergio Rodriguez-Vaamonde Lorenzo Torresani Koldo Espinosa Estibaliz Garrote Computer Vision Area-ICT/ESI Division TECNALIA Zamudio Spain Visual-Learning Group-CS Department Dartmouth College Hanover USA Multimedia Group-Communications Engineering Department University of the Basque Country Bilbao Spain
This paper addresses the problem of image annotation using a combination of visual and semantic information. Our model involves two stages: a Nearest Neighbor computation and a tag transfer stage that collects the fin... 详细信息
来源: 评论
A duality perspective on Loewner rational interpolation and state-space modelling of vector-exponential trajectories
A duality perspective on Loewner rational interpolation and ...
收藏 引用
IEEE Annual Conference on Decision and Control
作者: P. Rapisarda A.C. Antoulas Vision Learning and Control Group School of Electronics and Computer Science University of Southampton SO17 1BJ Southampton UK Department of Electrical and Computer Engineering Rice University Houston TX 77005 USA
We explore some connections between the Loewner approach to interpolation and realization, and that based on bilinear differential forms arising in the behavioral framework. We show that a crucial concept underlying b... 详细信息
来源: 评论