咨询与建议

限定检索结果

文献类型

  • 30 篇 会议
  • 13 篇 期刊文献

馆藏范围

  • 43 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 26 篇 工学
    • 19 篇 计算机科学与技术...
    • 18 篇 软件工程
    • 9 篇 信息与通信工程
    • 8 篇 光学工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 电气工程
    • 7 篇 控制科学与工程
    • 7 篇 生物工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 网络空间安全
    • 2 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 核科学与技术
    • 1 篇 农业工程
  • 18 篇 理学
    • 9 篇 数学
    • 7 篇 生物学
    • 5 篇 物理学
    • 2 篇 化学
    • 2 篇 统计学(可授理学、...
    • 1 篇 系统科学
  • 6 篇 管理学
    • 5 篇 图书情报与档案管...
  • 5 篇 医学
    • 5 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 9 篇 computer vision
  • 5 篇 gabor filters
  • 5 篇 object recogniti...
  • 4 篇 image segmentati...
  • 4 篇 feature extracti...
  • 4 篇 lung cancer
  • 3 篇 neural networks
  • 3 篇 data mining
  • 3 篇 shape
  • 2 篇 knowledge based ...
  • 2 篇 transfer learnin...
  • 2 篇 vectors
  • 2 篇 handwriting reco...
  • 2 篇 fuzzy systems
  • 2 篇 navigation
  • 2 篇 semantics
  • 2 篇 benchmarking
  • 2 篇 humans
  • 2 篇 machine intellig...
  • 2 篇 australia

机构

  • 4 篇 machine vision a...
  • 3 篇 department of co...
  • 3 篇 computer vision ...
  • 3 篇 department of pa...
  • 2 篇 massachusetts in...
  • 2 篇 university of sc...
  • 2 篇 machine vision a...
  • 2 篇 computer vision ...
  • 2 篇 universidad pomp...
  • 2 篇 tata memorial ce...
  • 2 篇 department of in...
  • 2 篇 machine vision a...
  • 2 篇 center for mr re...
  • 2 篇 neuroimaging inf...
  • 2 篇 department of qu...
  • 2 篇 fraunhofer mevis...
  • 2 篇 research institu...
  • 2 篇 department of ra...
  • 2 篇 computer vision ...
  • 2 篇 university of pe...

作者

  • 11 篇 singh koushlendr...
  • 8 篇 zhi-qiang liu
  • 3 篇 bakas spyridon
  • 3 篇 liu zhi-qiang
  • 3 篇 cabezas mariano
  • 3 篇 saikia trishna
  • 2 篇 kotrotsou aikate...
  • 2 篇 wiest roland
  • 2 篇 singh onkar
  • 2 篇 jakab andras
  • 2 篇 nazeri arash
  • 2 篇 liu zq
  • 2 篇 ma jun
  • 2 篇 hansdah malho
  • 2 篇 fathallah-shaykh...
  • 2 篇 colen rivka
  • 2 篇 milchenko mikhai...
  • 2 篇 mehta ravishanka...
  • 2 篇 n. barnes
  • 2 篇 lei zhu

语言

  • 40 篇 英文
  • 3 篇 其他
检索条件"机构=Computer Vision and Machine Intelligence Lab Departmelit of Computer Science"
43 条 记 录,以下是21-30 订阅
排序:
Integrating mission, logistics, and task planning for skills-based robot control in industrial kitting applications  34
Integrating mission, logistics, and task planning for skills...
收藏 引用
34th Workshop of the UK Planning and Scheduling Special Interest Group, PlanSIG 2016
作者: Crosby, Matthew Petrick, Ronald P. A. Toscano, César Dias, Rui Correia Rovida, Francesco Krüger, Volker Department of Computer Science Heriot-Watt University EdinburghEH14 4AS United Kingdom INESC TEC Technology and Science Porto4200 - 465 Portugal Robotics Vision and Machine Intelligence Lab. Aalborg University Copenhagen2450 Denmark
This paper presents an integrated cognitive robotics system for industrial kitting operations in a modern factory setting. The robot system combines low-level robot control and execution monitoring with automated miss... 详细信息
来源: 评论
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results
arXiv
收藏 引用
arXiv 2021年
作者: Mehta, Raghav Filos, Angelos Baid, Ujjwal Sako, Chiharu McKinley, Richard Rebsamen, Michael Dätwyler, Katrin Meier, Raphael Radojewski, Piotr Murugesan, Gowtham Krishnan Nalawade, Sahil Ganesh, Chandan Wagner, Ben Yu, Fang F. Fei, Baowei Madhuranthakam, Ananth J. Maldjian, Joseph A. Daza, Laura Gómez, Catalina Arbeláez, Pablo Dai, Chengliang Wang, Shuo Reynaud, Hadrien Mo, Yuanhan Angelini, Elsa Guo, Yike Bai, Wenjia Banerjee, Subhashis Pei, Linmin Murat, A.K. Rosas-González, Sarahi Zemmoura, Ilyess Tauber, Clovis Vu, Minh H. Nyholm, Tufve Löfstedt, Tommy Ballestar, Laura Mora Vilaplana, Veronica McHugh, Hugh Talou, Gonzalo Maso Wang, Alan Patel, Jay Chang, Ken Hoebel, Katharina Gidwani, Mishka Arun, Nishanth Gupta, Sharut Aggarwal, Mehak Singh, Praveer Gerstner, Elizabeth R. Kalpathy-Cramer, Jayashree Boutry, Nicolas Huard, Alexis Vidyaratne, Lasitha Rahman, Md Monibor Iftekharuddin, Khan M. Chazalon, Joseph Puybareau, Elodie Tochon, Guillaume Ma, Jun Cabezas, Mariano Llado, Xavier Oliver, Arnau Valencia, Liliana Valverde, Sergi Amian, Mehdi Soltaninejad, Mohammadreza Myronenko, Andriy Hatamizadeh, Ali Feng, Xue Dou, Quan Tustison, Nicholas Meyer, Craig Shah, Nisarg A. Talbar, Sanjay Weber, Marc-André Mahajan, Abhishek Jakab, Andras Wiest, Roland Fathallah-Shaykh, Hassan M. Nazeri, Arash Milchenko, Mikhail Marcus, Daniel Kotrotsou, Aikaterini Colen, Rivka Freymann, John Kirby, Justin Davatzikos, Christos Menze, Bjoern Bakas, Spyridon Gal, Yarin Arbel, Tal McGill University MontrealQC Canada Group University of Oxford Oxford United Kingdom University of Pennsylvania PhiladelphiaPA United States Department of Radiology Perelman School of Medicine The University of Pennsylvania PhiladelphiaPA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States University Institute of Diagnostic and Interventional Neuroradiology University of Bern Inselspital Bern University Hospital Bern Switzerland Department of Radiology University of Texas Southwestern Medical Center DallasTX United States Department of Bioengineering University of Texas DallasTX United States Advanced Imaging Research Center University of Texas Southwestern Medical Center DallasTX United States Universidad de los Andes Bogotá Colombia Data Science Institute Imperial College London London United Kingdom NIHR Imperial BRC ITMAT Data Science Group Imperial College London London United Kingdom Department of Brain Sciences Imperial College London London United Kingdom Machine Intelligence Unit Indian Statistical Institute Kolkata India Department of CSE University of Calcutta Kolkata India Department of Information Technology Uppsala University Uppsala Sweden Department of Diagnostic Radiology The University of Pittsburgh Medical Center PittsburghPA United States UMR U1253 iBrain Université de Tours Inserm Tours France Department of Radiation Sciences Umeå University Umeå Sweden Department of Computing Science Umeå University Umeå Sweden Signal Theory and Communications Department Universitat Politècnica de Catalunya Barcelona Tech Barcelona Spain Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand Radiology Department Auckland City Hospital Auckland New Zealand Auckland Bioengineering Institute University of Auckland New Zealand Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology
Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology ... 详细信息
来源: 评论
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
arXiv
收藏 引用
arXiv 2018年
作者: Bakas, Spyridon Reyes, Mauricio Jakab, Andras Bauer, Stefan Rempfler, Markus Crimi, Alessandro Shinohara, Russell Takeshi Berger, Christoph Ha, Sung Min Rozycki, Martin Prastawa, Marcel Alberts, Esther Lipkova, Jana Freymann, John Kirby, Justin Bilello, Michel Fathallah-Shaykh, Hassan M. Wiest, Roland Kirschke, Jan Wiestler, Benedikt Colen, Rivka Kotrotsou, Aikaterini Lamontagne, Pamela Marcus, Daniel Milchenko, Mikhail Nazeri, Arash Weber, Marc-Andr Mahajan, Abhishek Baid, Ujjwal Gerstner, Elizabeth Kwon, Dongjin Acharya, Gagan Agarwal, Manu Alam, Mahbubul Albiol, Alberto Albiol, Antonio Albiol, Francisco J. Alex, Varghese Allinson, Nigel Amorim, Pedro H.A. Amrutkar, Abhijit Anand, Ganesh Andermatt, Simon Arbel, Tal Arbelaez, Pablo Avery, Aaron Azmat, Muneeza Pranjal, B. Bai, Wenjia Banerjee, Subhashis Barth, Bill Batchelder, Thomas Batmanghelich, Kayhan Battistella, Enzo Beers, Andrew Belyaev, Mikhail Bendszus, Martin Benson, Eze Bernal, Jose Bharath, Halandur Nagaraja Biros, George Bisdas, Sotirios Brown, James Cabezas, Mariano Cao, Shilei Cardoso, Jorge M. Carver, Eric N. Casamitjana, Adri Castillo, Laura Silvana Cat, Marcel Cattin, Philippe Cérigues, Albert Chagas, Vinicius S. Chandra, Siddhartha Chang, Yi-Ju Chang, Shiyu Chang, Ken Chazalon, Joseph Chen, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Cheng, Kun Choudhury, Ahana Roy Chylla, Roger Clrigues, Albert Colleman, Steven Colmeiro, Ramiro German Rodriguez Combalia, Marc Costa, Anthony Cui, Xiaomeng Dai, Zhenzhen Dai, Lutao Daza, Laura Alexandra Deutsch, Eric Ding, Changxing Dong, Chao Dong, Shidu Dudzik, Wojciech Eaton-Rosen, Zach Egan, Gary Escudero, Guilherme Estienne, Tho Everson, Richard Fabrizio, Jonathan Fan, Yong Fang, Longwei Feng, Xue Ferrante, Enzo Fidon, Lucas Fischer, Martin French, Andrew P. Fridman, Naomi Fu, Huan Fuentes, David Gao, Yaozong Gates, Evan Gering, David Gholami, Amir Gierke, Willi Glocker, Ben Gong, Mingming Gonzlez-Vill, Sandra Grosges, T. Guan, Yuanfang Guo, Sheng Gupta, Sudeep Han, Woo-Sup Han, Il Song Harmuth, Ko Center for Biomedical Image Computing and Analytics University of Pennsylvania PhiladelphiaPA United States Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Institute for Surgical Technology and Biomechanics University of Bern Bern Switzerland Center for MR-Research University Children's Hospital Zurich Zurich Switzerland Support Centre for Advanced Neuroimaging Inselspital Institute for Diagnostic and Interventional Neuroradiology Bern University Hospital Bern Switzerland University Hospital of Zurich Zurich Switzerland Center for Clinical Epidemiology and Biostatistics University of Pennsylvania Philadelphia United States Image-Based Biomedical Modeling Group Technical University of Munich Munich Germany Icahn School of Medicine Mount Sinai Health System New YorkNY United States Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research FrederickMD21701 United States Cancer Imaging Program National Cancer Institute National Institutes of Health BethesdaMD20814 United States Department of Neurology University of Alabama at Birmingham BirminghamAL United States Department of Diagnostic Radiology University of Texas MD Anderson Cancer Center HoustonTX United States Department of Psychology Washington University St. LouisMO United States Neuroimaging Informatics and Analysis Center Washington University St. LouisMO United States Department of Radiology Washington University St. LouisMO United States Institute of Diagnostic and Interventional Radiology Pediatric Radiology and Neuroradiology University Medical Center Rostock Ernst-Heydemann-Str. 6 Rostock18057 Germany Tata Memorial Centre Homi Bhabha National Institute Mumbai India Shri Guru Gobind Singhji Institute of Engineering and Technology Nanded India NVIDIA Santa Clara
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrot... 详细信息
来源: 评论
26th Annual Computational Neuroscience Meeting (CNS*2017) of the Organization for Computational Neuroscience Antwerp, Belgium, July 15-20, 2017
收藏 引用
BMC NEUROscience 2017年 第SUPPL 1期18卷 59-59页
作者: [Anonymous] Indiana University Purdue University Indianapolis Indianapolis IN 46032 USA Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN 46032 USA Department of Mathematics East Carolina University Greenville NC 27858 USA Jülich Supercomputing Centre Forschungszentrum Jülich 52425 Jülich Germany Future Systems Swiss National Supercomputing Centre 8092 Zurich Switzerland User Engagement and Support Swiss National Supercomputing Centre 6900 Lugano Switzerland Institut de Neurosciences des Systèmes Aix Marseille Univ 13005 Marseille France Simulation Lab Neuroscience Forschungszentrum Jülich Jülich Germany Department of Experimental Psychology Ghent University 9000 Ghent Belgium Donders Center for Cognitive Neuroimaging Radboud University 6525HR Nijmegen The Netherlands Department of Electrical Computer and Energy Engineering University of Colorado Boulder CO 80309 USA Department of Neurosurgery Johns Hopkins School of Medicine Baltimore MD 21287 USA Department of Neurology Johns Hopkins School of Medicine Baltimore MD 21287 USA Department of Otolaryngology Johns Hopkins School of Medicine Baltimore MD 21287 USA INSERM U968 Paris France Sorbonne Universités UPMC University Paris 06 UMR_S 968 Institut de la Vision Paris France CNRS UMR_7210 Paris France Department of Computer Architecture and Technology University of Granada (CITIC) Granada Spain Sorbonne Universités UPMC Univ Paris 06 INSERM CNRS Institut de la Vision Paris France Department of Adaptive Machine Systems Osaka University Osaka Japan Department of Computer Science University of Cergy-Pontoise Cergy-Pontoise France Department of Physics and Astronomy College of Charleston Charleston SC 29424 USA School of Physics Faculty of Science University of Sydney Sydney NSW 2006 Australia Center of Excellence for Integrative Brain Function Australian Research Council Sydney Australia Max Planck Institute for Human Cognitive and Brain Sciences Saxony Lei
来源: 评论
Unsupervised learning of action primitives
Unsupervised learning of action primitives
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Sanmohan Volker Krüger Danica Kragic Computer Vision and Machine Intelligence Lab Aalborg University Copenhagen Denmark School of Computer Science and Communication Royal Institute of Technology (KTH) Stockholm Sweden
Action representation is a key issue in imitation learning for humanoids. With the recent finding of mirror neurons there has been a growing interest in expressing actions as a combination meaningful subparts called p... 详细信息
来源: 评论
On the problem of determination of spring stiffness parameters for spring-mesh models
On the problem of determination of spring stiffness paramete...
收藏 引用
Medicine Meets Virtual Reality 16 - Parallel, Combinatorial, Convergent: NextMed by Design, MMVR 2008
作者: Quang Huy Viet, Huynh Hirai, Shinichi Shirai, Yoshiaki Yamaguchi, Satoshi Tanaka, Hiromi T. Kawasaki, Hiroshi Kawai, Yukiko Computer Vision and Graphics Laboratory Department of Information and Computer Science Saitama University Saitama Japan Laboratory for Integrated Machine Intelligence Department of Robotics Ritsumeikan University Kusatsu Japan Computer Vision Lab. Department of Human and Computer Intelligence Ritsumeikan University Kusatsu Japan Kawai Lab. Department of Computer Science Kyoto Sangyo University Kyoto Japan
On account of having real-time behavior and being easy to implement, spring meshes have been used for modeling deformable objects. Determining spring stiffness parameters for simulation of soft objects with high accur... 详细信息
来源: 评论
Retrieving faces using adaptive subspace self-organising map
Retrieving faces using adaptive subspace self-organising map
收藏 引用
International Symposium on Intelligent Multimedia, Video and Speech Processing
作者: Zhi-Qiang Liu School of Creative Media City University of Hong Kong Hong Kong China Computer Vision and Machine Intelligence Lab Department of Computer Science and Software Engineerin University of Melbourne VIC Australia
We present the adaptive manifold self-organising map (AMSOM) for a face retrieval system. Our experimental results show that it has an excellent potential for face retrieval applications. As compared to the more tradi... 详细信息
来源: 评论
A framework for object-based image retrieval at the semantic level  3rd
A framework for object-based image retrieval at the semantic...
收藏 引用
3rd International Conference on Visual Information Systems, VISUAL 1999
作者: Jia, Linhui Kitchen, Leslie Computer Vision and Machine Intelligence Lab Department of Computer Science and Software Engineering Melbourne University ParkvilleVIC3052 Australia
This paper proposes a framework with essential components and processes for object-based image retrieval based on semantically meaningful classes of objects in images. An instantiation of the framework is presented to... 详细信息
来源: 评论
Classification-driven object-based image retrieval
Classification-driven object-based image retrieval
收藏 引用
IEEE International Conference on Multimedia Computing and Systems (ICMCS)
作者: L. Jia L. Kitchen Computer Vision and Machine Intelligence Lab Department of Computer Science and Software Engineering University of Melbourne Parkville VIC Australia
This paper describes an approach for object-based image retrieval based on classes of objects in images. In this approach, contours of objects are extracted from images and are represented under a scheme which satisfi... 详细信息
来源: 评论
Learning fuzzy modelling through genetic algorithm for object recognition
Learning fuzzy modelling through genetic algorithm for objec...
收藏 引用
IEEE International Conference on Evolutionary Computation
作者: R. Soodamani Z.Q. Liu Computer Vision and Machine Intelligence Lab Department of Computer Science University of Melbourne Australia
The paper proposes a genetic-algorithm-based learning strategy that models membership functions of the fuzzy attributes of surfaces in a model based machine vision system. The objective function aims at enhancing reco... 详细信息
来源: 评论