咨询与建议

限定检索结果

文献类型

  • 202 篇 期刊文献
  • 196 篇 会议
  • 1 册 图书

馆藏范围

  • 399 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 260 篇 工学
    • 176 篇 计算机科学与技术...
    • 153 篇 软件工程
    • 67 篇 信息与通信工程
    • 62 篇 光学工程
    • 60 篇 生物医学工程(可授...
    • 57 篇 生物工程
    • 35 篇 电气工程
    • 29 篇 控制科学与工程
    • 21 篇 电子科学与技术(可...
    • 18 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 仪器科学与技术
    • 8 篇 建筑学
    • 7 篇 土木工程
    • 7 篇 交通运输工程
    • 7 篇 网络空间安全
  • 169 篇 理学
    • 82 篇 数学
    • 58 篇 物理学
    • 58 篇 生物学
    • 26 篇 统计学(可授理学、...
    • 14 篇 系统科学
    • 13 篇 化学
  • 76 篇 管理学
    • 47 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 46 篇 医学
    • 39 篇 临床医学
    • 33 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 9 篇 法学
    • 9 篇 社会学
  • 7 篇 农学
  • 5 篇 经济学
  • 5 篇 教育学
  • 2 篇 哲学
  • 2 篇 文学
  • 2 篇 艺术学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 28 篇 computer vision
  • 22 篇 image segmentati...
  • 16 篇 feature extracti...
  • 12 篇 semantics
  • 11 篇 deep learning
  • 10 篇 machine intellig...
  • 9 篇 neural networks
  • 8 篇 data mining
  • 7 篇 computer science
  • 7 篇 gabor filters
  • 7 篇 convolution
  • 7 篇 fuzzy systems
  • 7 篇 computational mo...
  • 7 篇 classification (...
  • 7 篇 forecasting
  • 7 篇 object recogniti...
  • 7 篇 training
  • 6 篇 humans
  • 6 篇 image analysis
  • 6 篇 shape

机构

  • 8 篇 university of sc...
  • 6 篇 hessian ai
  • 6 篇 graduate institu...
  • 6 篇 centre for cogni...
  • 6 篇 key lab. of shan...
  • 6 篇 machine & hybrid...
  • 6 篇 center for brain...
  • 6 篇 nanjing universi...
  • 6 篇 heidelberg
  • 6 篇 department of el...
  • 5 篇 shanghai jiao to...
  • 5 篇 south china univ...
  • 5 篇 centre for medic...
  • 5 篇 universitat pomp...
  • 5 篇 department of ra...
  • 5 篇 university of pe...
  • 5 篇 pazhou lab
  • 5 篇 peng cheng labor...
  • 5 篇 department of pa...
  • 5 篇 department of co...

作者

  • 17 篇 zhi-qiang liu
  • 11 篇 singh koushlendr...
  • 10 篇 timofte radu
  • 9 篇 jha debesh
  • 9 篇 bakas spyridon
  • 9 篇 lu bao-liang
  • 9 篇 nair madhu s.
  • 9 篇 kersting kristia...
  • 8 篇 kofler florian
  • 8 篇 bagci ulas
  • 7 篇 reinke annika
  • 7 篇 menze bjoern
  • 6 篇 chen chen
  • 6 篇 zhao hai
  • 6 篇 nandy anup
  • 6 篇 madhu s. nair
  • 5 篇 galdran adrian
  • 5 篇 zhang dafeng
  • 5 篇 ezhov ivan
  • 5 篇 glocker ben

语言

  • 372 篇 英文
  • 26 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Machine Intelligence Lab Department of Computer Science"
399 条 记 录,以下是131-140 订阅
排序:
Your transformer may not be as powerful as you expect  22
Your transformer may not be as powerful as you expect
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Shengjie Luo Shanda Li Shuxin Zheng Tie-Yan Liu Liwei Wang Di He National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University and Zhejiang Lab Machine Learning Department School of Computer Science Carnegie Mellon University Microsoft Research National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University and Center for Data Science Peking University National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University
Relative Positional Encoding (RPE), which encodes the relative distance between any pair of tokens, is one of the most successful modifications to the original Transformer. As far as we know, theoretical understanding...
来源: 评论
MARK MY WORDS: DANGERS OF WATERMARKED IMAGES IN IMAGENET
arXiv
收藏 引用
arXiv 2023年
作者: Bykov, Kirill Müller, Klaus-Robert Höhne, Marina M.-C. Technische Universität Berlin Machine Learning Group Berlin10587 Germany Understandable Machine Intelligence Lab ATB Potsdam14469 Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Korea University Department of Artificial Intelligence Seoul136-713 Korea Republic of Max Planck Institute for Informatics Saarbrücken66123 Germany Machine Learning Group UiT the Arctic University of Norway Tromsø9037 Norway Department of Computer Science University of Potsdam Potsdam14476 Germany
The utilization of pre-trained networks, especially those trained on ImageNet, has become a common practice in computer vision. However, prior research has indicated that a significant number of images in the ImageNet... 详细信息
来源: 评论
TNPAR: Topological Neural Poisson Auto-Regressive Model for Learning Granger Causal Structure from Event Sequences
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Yuequn Cai, Ruichu Chen, Wei Qiao, Jie Yan, Yuguang Li, Zijian Zhang, Keli Hao, Zhifeng School of Computer Science Guangdong University of Technology Guangzhou China Peng Cheng Laboratory Shenzhen China Machine Learning Department Mohamed bin Zayed University of Artificial Intelligence Abu Dhabi United Arab Emirates Huawei Noah's Ark Lab Huawei Paris France College of Science Shantou University Shantou China
Learning Granger causality from event sequences is a challenging but essential task across various applications. Most existing methods rely on the assumption that event sequences are independent and identically distri... 详细信息
来源: 评论
NTIRE 2023 Image Shadow Removal Challenge Report
NTIRE 2023 Image Shadow Removal Challenge Report
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern Recognition Workshops, CVPRW 2023
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Timofte, Radu Cui, Shuhao Huang, Junshi Tian, Shuman Fan, Mingyuan Zhang, Jiaqi Zhu, Li Wei, Xiaoming Wei, Xiaolin Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Dong, Xiaoyi Zhang, Xi Sheryl Li, Chenghua Leng, Cong Yeo, Woon-Ha Oh, Wang-Taek Lee, Yeo-Reum Ryu, Han-Cheol Luo, Jinting Jiang, Chengzhi Han, Mingyan Wu, Qi Lin, Wenjie Yu, Lei Li, Xinpeng Jiang, Ting Fan, Haoqiang Liu, Shuaicheng Xu, Shuning Song, Binbin Chen, Xiangyu Zhang, Shile Zhou, Jiantao Zhang, Zhao Zhao, Suiyi Zheng, Huan Gao, Yangcheng Wei, Yanyan Wang, Bo Ren, Jiahuan Luo, Yan Kondo, Yuki Miyata, Riku Yasue, Fuma Naruki, Taito Ukita, Norimichi Chang, Hua-En Yang, Hao-Hsiang Chen, Yi-Chung Chiang, Yuan-Chun Huang, Zhi-Kai Chen, Wei-Ting Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Xianwei, Li Fu, Huiyuan Liu, Chunlin Ma, Huadong Fu, Binglan He, Huiming Wang, Mengjia She, Wenxuan Liu, Yu Nathan, Sabari Kansal, Priya Zhang, Zhongjian Yang, Huabin Wang, Yan Zhang, Yanru Phutke, Shruti S. Kulkarni, Ashutosh Khan, Md Raqib Murala, Subrahmanyam Vipparthi, Santosh Kumar Ye, Heng Liu, Zixi Yang, Xingyi Liu, Songhua Wu, Yinwei Jing, Yongcheng Yu, Qianhao Zheng, Naishan Huang, Jie Long, Yuhang Yao, Mingde Zhao, Feng Zhao, Bowen Ye, Nan Shen, Ning Cao, Yanpeng Xiong, Tong Xia, Weiran Li, Dingwen Xia, Shuchen Computer Vision Lab Ifi Caidas University of Würzburg Germany Computer Vision Lab Eth Zürich Switzerland Meituan Group China Department of Information Technology Uppsala University Sweden Institute of Automation Chinese Academy of Sciences Beijing China Nanjing China Maicro Nanjing China Department of Artificial Intelligence Convergence Sahmyook University Seoul Korea Republic of Megvii Technology China University of Electronic Science and Technology of China China University of Macau China China Toyota Technological Institute Japan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Beijing University of Post and Teleconmunication Beijing China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education China Couger Inc. Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar Punjab Rupnagar India Research Institute Singapore National University of Singapore Singapore Research Institute Singapore University of Sydney Australia Brain-Inspired Vision Laboratory Information Science and Technology Institution University of Science and Technology of China China State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou310027 China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou310027 China South China University of Technology China
This work reviews the results of the NTIRE 2023 Challenge on Image Shadow Removal. The described set of solutions were proposed for a novel dataset, which captures a wide range of object-light interactions. It consist... 详细信息
来源: 评论
A Reverse Mamba Attention Network for Pathological Liver Segmentation
arXiv
收藏 引用
arXiv 2025年
作者: Zeng, Jun Jha, Debesh Aktas, Ertugrul Keles, Elif Medetalibeyoglu, Alpay Antalek, Matthew Lewandowski, Robert Ladner, Daniela Borhani, Amir A. Durak, Gorkem Bagci, Ulas School of Software Engineering Chongqing University of Posts and Telecommunications Chongqing China Department of Computer Science University of South Dakota VermillionSD United States Machine & Hybrid Intelligence Lab. Northwestern University ChicagoIL United States Department of Interventional Radiology Northwestern University ChicagoIL United States Department of Surgery Northwestern University ChicagoIL United States Department of Radiology Northwestern University ChicagoIL United States
We present RMA-Mamba, a novel architecture that advances the capabilities of vision state space models through a specialized reverse mamba attention module (RMA). The key innovation lies in RMA-Mamba’s ability to cap... 详细信息
来源: 评论
Beyond Instruction Following: Evaluating Inferential Rule Following of Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Wangtao Zhang, Chenxiang Zhang, Xueyou Yu, Xuanqing Huang, Ziyang Xu, Haotian Chen, Pei He, Shizhu Zhao, Jun Liu, Kang The Laboratory of Cognition and Decision Intelligence for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China CAS Engineering Laboratory for Intelligent Industrial Vision Institute of Automation Chinese Academy of Sciences Beijing China Department of Computer Science and Engineering Texas A&M University United States Shanghai Artificial Intelligence Laboratory China Xiaohongshu Inc China AI Lab AIGility Cloud Innovation Beijing China
Although Large Language Models (LLMs) have demonstrated strong instruction-following ability, they are further supposed to be controlled and guided by inferential rules in real-world scenarios to be safe, accurate, an... 详细信息
来源: 评论
Efficient Multi-Query Oriented Continuous Subgraph Matching
Efficient Multi-Query Oriented Continuous Subgraph Matching
收藏 引用
International Conference on Data Engineering
作者: Ziyi Ma Jianye Yang Xu Zhou Guoqing Xiao Jianhua Wang Liang Yang Kenli Li Xuemin Lin School of Artificial Intelligence Hebei University of Technology China Guangxi Key Laboratory of Machine Vision and Intelligent Control Wuzhou University China Cyberspace Institute of Advanced Technology Guangzhou University China Department of New Networks PengCheng Laboratory China College of Computer Science and Electronic Engineering Hunan University China Shenzhen Research Institute Hunan University China Antai College of Economics and Management Shanghai Jiao Tong University China
Continuous subgraph matching (CSM) is a critical task for analyzing dynamic graphs and has a wide range of applications, such as merchant fraud detection, cyber-attack hunting, and rumor detection. Although many effic... 详细信息
来源: 评论
Is L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Chuwei Li, Shanda He, Di Wang, Liwei School of Mathematical Sciences Peking University China Machine Learning Department School of Computer Science Carnegie Mellon University United States National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University China Center for Data Science Peking University China Zhejiang Lab China
The Physics-Informed Neural Network (PINN) approach is a new and promising way to solve partial differential equations using deep learning. The L2 Physics-Informed Loss is the de-facto standard in training Physics-Inf... 详细信息
来源: 评论
Inconsistency Distillation For Consistency:Enhancing Multi-View Clustering via Mutual Contrastive Teacher-Student Leaning
Inconsistency Distillation For Consistency:Enhancing Multi-V...
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Dunqiang Liu Shu-Juan Peng Xin Liu Lei Zhu Zhen Cui Taihao Li Dept. of Comput. Sci. & Fujian Key Lab. of Big Data Intelligence and Security Huaqiao University Xiamen China Zhejiang Lab Hangzhou China Xiamen Key Lab. of Computer Vision and Pattern Recognition Huaqiao University Xiamen China Key Lab. of Computer Vision and Machine Learning (Huaqiao University) Fujian Province University Xiamen China School of Information Sci. and Eng. Shandong Normal University Jinan China School of Computer Sci. and Eng. Nanjing University of Science and Technology Nanjing China
Multi-view clustering has attracted more attention recently since many real-world data are comprised of different representations or views. Recent multi-view clustering works mainly exploit the instance consistency to... 详细信息
来源: 评论
ASSISTIVE AI FOR AUGMENTING HUMAN DECISION-MAKING
arXiv
收藏 引用
arXiv 2024年
作者: Gyöngyössy, Natabara Máté Török, Bernát Farkas, Csilla Lucaj, Laura Menyhárd, Attila Menyhárd-Balázs, Krisztina Simonyi, András van der Smagt, Patrick Ződi, Zsolt Lőrincz, András Department of Artificial Intelligence ELTE Eötvös Loránd University Budapest Hungary Institute of the Information Society Ludovika University of Public Service Budapest Hungary Department of Computer Science and Engineering University of South Carolina ColumbiaSC United States Machine Learning Research Lab Volkswagen Group Munich Germany Department of Civil Law ELTE Eötvös Loránd University Budapest Hungary
Regulatory frameworks for the use of AI are emerging. However, they trail behind the fast-evolving malicious AI technologies that can quickly cause lasting societal damage. In response, we introduce a pioneering Assis...
来源: 评论