咨询与建议

限定检索结果

文献类型

  • 204 篇 期刊文献
  • 198 篇 会议
  • 1 册 图书

馆藏范围

  • 403 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 266 篇 工学
    • 183 篇 计算机科学与技术...
    • 156 篇 软件工程
    • 68 篇 信息与通信工程
    • 62 篇 光学工程
    • 61 篇 生物医学工程(可授...
    • 58 篇 生物工程
    • 35 篇 电气工程
    • 31 篇 控制科学与工程
    • 21 篇 电子科学与技术(可...
    • 18 篇 机械工程
    • 12 篇 化学工程与技术
    • 9 篇 仪器科学与技术
    • 8 篇 建筑学
    • 7 篇 土木工程
    • 7 篇 交通运输工程
    • 7 篇 网络空间安全
  • 175 篇 理学
    • 86 篇 数学
    • 61 篇 生物学
    • 58 篇 物理学
    • 27 篇 统计学(可授理学、...
    • 14 篇 化学
    • 14 篇 系统科学
  • 77 篇 管理学
    • 48 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 47 篇 医学
    • 40 篇 临床医学
    • 34 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 9 篇 法学
    • 9 篇 社会学
  • 7 篇 农学
  • 6 篇 教育学
  • 5 篇 经济学
  • 2 篇 哲学
  • 2 篇 文学
  • 2 篇 艺术学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 28 篇 computer vision
  • 22 篇 image segmentati...
  • 16 篇 feature extracti...
  • 12 篇 deep learning
  • 12 篇 semantics
  • 10 篇 machine intellig...
  • 9 篇 neural networks
  • 8 篇 computer science
  • 8 篇 data mining
  • 8 篇 classification (...
  • 8 篇 object recogniti...
  • 7 篇 gabor filters
  • 7 篇 convolution
  • 7 篇 fuzzy systems
  • 7 篇 computational mo...
  • 7 篇 forecasting
  • 7 篇 training
  • 6 篇 humans
  • 6 篇 image analysis
  • 6 篇 shape

机构

  • 8 篇 university of sc...
  • 6 篇 centre for medic...
  • 6 篇 hessian ai
  • 6 篇 graduate institu...
  • 6 篇 centre for cogni...
  • 6 篇 key lab. of shan...
  • 6 篇 machine & hybrid...
  • 6 篇 center for brain...
  • 6 篇 nanjing universi...
  • 6 篇 heidelberg
  • 6 篇 department of el...
  • 5 篇 shanghai jiao to...
  • 5 篇 south china univ...
  • 5 篇 department of qu...
  • 5 篇 department of ra...
  • 5 篇 university of pe...
  • 5 篇 pazhou lab
  • 5 篇 department of pa...
  • 5 篇 department of co...
  • 5 篇 school of comput...

作者

  • 17 篇 zhi-qiang liu
  • 11 篇 singh koushlendr...
  • 10 篇 timofte radu
  • 10 篇 nair madhu s.
  • 9 篇 jha debesh
  • 9 篇 bakas spyridon
  • 9 篇 lu bao-liang
  • 9 篇 kersting kristia...
  • 9 篇 bagci ulas
  • 8 篇 kofler florian
  • 7 篇 reinke annika
  • 7 篇 menze bjoern
  • 6 篇 chen chen
  • 6 篇 zhao hai
  • 6 篇 nandy anup
  • 6 篇 li hao
  • 5 篇 galdran adrian
  • 5 篇 zhang dafeng
  • 5 篇 ezhov ivan
  • 5 篇 glocker ben

语言

  • 366 篇 英文
  • 36 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Machine Intelligence Lab Department of Computer Science"
403 条 记 录,以下是161-170 订阅
A Survey of the Self Supervised Learning Mechanisms for vision Transformers
arXiv
收藏 引用
arXiv 2024年
作者: Khan, Asifullah Sohail, Anabia Fiaz, Mustansar Hassan, Mehdi Afridi, Tariq Habib Marwat, Sibghat Ullah Munir, Farzeen Ali, Safdar Naseem, Hannan Zaheer, Muhammad Zaigham Ali, Kamran Sultana, Tangina Tanoli, Ziaurrehman Akhter, Naeem Pattern Recognition Lab DCIS PIEAS Nilore Islamabad45650 Pakistan PIEAS Nilore Islamabad45650 Pakistan Deep Learning Lab Center for Mathematical Sciences PIEAS Nilore Islamabad45650 Pakistan Center of Secure Cyber-Physical Security Systems Khalifa University Abu Dhabi United Arab Emirates IBM Research United States Department of Computer Science Air University Islamabad Pakistan Department of Computer Science and Engineering Kyung Hee University Global Campus 1732 Gyeonggi-do Yongin17104 Korea Republic of Department of Electrical Engineering and Automation Aalto University Finland Finnish Center of Artificial Center Finland Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman Malaysia Computer Vision Department Mohamed Bin Zayed University of Artificial Intelligence United Arab Emirates Karachi Pakistan Department of Electronics and Communication Engineering Hajee Mohammad Danesh Science and Technology University Bangladesh HiLIFE University of Helsinki Finland
vision Transformers (ViTs) have recently demonstrated remarkable performance in computer vision tasks. However, their parameter-intensive nature and reliance on large amounts of data for effective performance have shi... 详细信息
来源: 评论
A Low-Cost Pathological Gait Detection System in Multi-Kinect Environment  1
收藏 引用
20th International Symposium on Optomechatronic Technologies, ISOT 2019
作者: Chakraborty, Saikat Mishra, Rishabh Dwivedi, Anurag Das, Tania Nandy, Anup Machine Intelligence and Bio-motion Research Lab Department of Computer Science and Engineering National Institute of Technology Rourkela RourkelaOdisha India Department of Computer Science and Engineering National Institute of Technology Sikkim Sikkim India Department of Electronics and Communication Engineering Heritage Institute of Technology KolkataWest Bengal India
Traditional vision-based systems used for automatic gait pathology detection, associate high-cost. However, with the advent of Microsoft Kinect sensor, researchers tried to model some low-cost gait assessment systems;... 详细信息
来源: 评论
Sad: Saliency-based defenses against adversarial examples
arXiv
收藏 引用
arXiv 2020年
作者: Tran, Richard Patrick, David Geyer, Michael Fernandez, Amanda S. Vision and Artificial Intelligence Lab Department of Computer Science University of Texas at San Antonio
With the rise in popularity of machine and deep learning models, there is an increased focus on their vulnerability to malicious inputs. These adversarial examples drift model predictions away from the original intent... 详细信息
来源: 评论
NTIRE 2023 Challenge on Image Super-Resolution (×4): Methods and Results
NTIRE 2023 Challenge on Image Super-Resolution (×4): Method...
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern Recognition Workshops, CVPRW 2023
作者: Zhang, Yulun Zhang, Kai Chen, Zheng Li, Yawei Timofte, Radu Zhang, Junpei Zhang, Kexin Peng, Rui Ma, Yanbiao Jiao, Licheng Huang, Huaibo Zhou, Xiaoqiang Ai, Yuang He, Ran Qiu, Yajun Zhu, Qiang Li, Pengfei Li, Qianhui Zhu, Shuyuan Zhang, Dafeng Li, Jia Wang, Fan Li, Chunmiao Kim, TaeHyung Kil, Jungkeong Kim, Eon Yu, Yeonseung Lee, Beomyeol Lee, Subin Lim, Seokjae Chae, Somi Choi, Heungjun Huang, ZhiKai Chen, YiChung Chiang, YuanChun Yang, HaoHsiang Chen, WeiTing Chang, HuaEn Chen, I-Hsiang Hsieh, ChiaHsuan Kuo, SyYen Choi, Ui-Jin Conde, Marcos V. Khowaja, Sunder Ali Yoon, Jiseok Lee, Ik Hyun Gendy, Garas Sabor, Nabil Hou, Jingchao He, Guanghui Zhang, Zhao Li, Baiang Zheng, Huan Zhao, Suiyi Gao, Yangcheng Wei, Yanyan Ren, Jiahuan Wei, Jiayu Li, Yanfeng Sun, Jia Cheng, Zhanyi Li, Zhiyuan Yao, Xu Wang, Xinyi Li, Danxu Cui, Xuan Cao, Jun Li, Cheng Zheng, Jianbin Sarvaiya, Anjali Prajapati, Kalpesh Patra, Ratnadeep Barik, Pragnesh Rathod, Chaitanya Upla, Kishor Raja, Kiran Ramachandra, Raghavendra Busch, Christoph Computer Vision Lab Eth Zurich Switzerland Shanghai Jiao Tong University China University of Würzburg Germany Xidian University China Mais&cripac Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China University of Science and Technology of China China Beijing Institute of Technology China School of Information Science and Technology ShanghaiTech University China School of Information and Communication Engineering University of Electronic Science and Technology of China China China Lotte Data Communication Company Seoul Korea Republic of Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States MegaStudyEdu Korea Republic of Computer Vision Lab Caidas University of Würzburg Germany University of Sindh Pakistan Iklab Inc. Tech University of Korea Siheung-Si Korea Republic of Micro-Nano Electronics Department Shanghai Jiao Tong University China Electrical Engineering Department Faculty of Engineering Assiut University Egypt Hefei University of Technology China Beijing Jiaotong University China South China University of Technology Guangdong Guangzhou China Sardar Vallabhbhai National Institute of Technology India Norwegian University of Science and Technology Norway
This paper reviews the NTIRE 2023 challenge on image super-resolution (×4), focusing on the proposed solutions and results. The task of image super-resolution (SR) is to generate a high-resolution (HR) output fro... 详细信息
来源: 评论
Learning Graph Representation of Person-specific Cognitive Processes from Audio-visual Behaviours for Automatic Personality Recognition
arXiv
收藏 引用
arXiv 2021年
作者: Song, Siyang Shao, Zilong Jaiswal, Shashank Shen, Linlin Valstar, Michel Gunes, Hatice Department of Computer Science and Technology University of Cambridge Cambridge United Kingdom Computer Vision Institute Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence of Robotics of Society Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China Computer Vision Lab University of Nottingham Nottingham United Kingdom
This paper proposes to recognise the true (self-reported) personality from the learned simulation of the target subject’s cognition. This approach builds on two following findings in cognitive science: (i) human cogn... 详细信息
来源: 评论
LocalViT: Analyzing Locality in vision Transformers
LocalViT: Analyzing Locality in Vision Transformers
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Yawei Li Kai Zhang Jiezhang Cao Radu Timofte Michele Magno Luca Benini Luc Van Goo Computer Vision Lab D-ITET ETH Zurich Switzerland Center for Artificial Intelligence and Data Science (CAIDAS) University of Wurzburg Germany Center for Project-Based Learning D-ITET ETH Zurich Switzerland Integrated Systems Laboratory D-ITET ETH Zurich Switzerland Department of Electrical Electronic and Information Engineering University of Bologna Italy Processing Speech and Images (PSI) KU Leuven Belgium
The aim of this paper is to study the influence of locality mechanisms in vision transformers. Transformers originated from machine translation and are particularly good at modelling long-range dependencies within a l...
来源: 评论
Efficient Deep Models for Real-Time 4K Image Super-Resolution. NTIRE 2023 Benchmark and Report
Efficient Deep Models for Real-Time 4K Image Super-Resolutio...
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern Recognition Workshops, CVPRW 2023
作者: Conde, Marcos V. Zamfir, Eduard Timofte, Radu Motilla, Daniel Liu, Cen Zhang, Zexin Peng, Yunbo Lin, Yue Guo, Jiaming Zou, Xueyi Chen, Yuyi Liu, Yi Hao, Jia Yan, Youliang Zhang, Yuanfan Li, Gen Sun, Lei Kong, Lingshun Bai, Haoran Pan, Jinshan Dong, Jiangxin Tang, Jinhui Ayazoglu, Mustafa Bilecen, Bahri Batuhan Li, Mingxi Zhang, Yuhang Fan, Xianjun Sheng, Yankai Sun, Long Liu, Zibin Gou, Weiran Li, Shaoqing Yi, Ziyao Xiang, Yan Kong, Dehui Xu, Ke Gankhuyag, Ganzorig Yoon, Kihwan Zhang, Jin Yu, Gaocheng Zhang, Feng Wang, Hongbin Zhou, Zhou Chao, Jiahao Gao, Hongfan Gong, Jiali Yang, Zhengfeng Zeng, Zhenbing Chen, Chengpeng Guo, Zichao Park, Anjin Liu, Yuqing Jia, Qi Yu, Hongyuan Yin, Xuanwu Zuo, Kunlong Zhang, Dongyang Fu, Ting Cheng, Zhengxue Zhu, Shiai Zhou, Dajiang Yu, Weichen Ge, Lin Dong, Jiahua Zou, Yajun Wu, Zhuoyuan Han, Binnan Zhang, Xiaolin Zhang, Heng Shao, Ben Zheng, Shaolong Yin, Daheng Chen, Baijun Liu, Mengyang Nistor, Marian-Sergiu Chen, Yi-Chung Huang, Zhi-Kai Chiang, Yuan-Chun Chen, Wei-Ting Yang, Hao-Hsiang Chang, Hua-En Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Vo, Tu Yan, Qingsen Zhu, Yun Su, Jinqiu Zhang, Yanning Zhang, Cheng Luo, Jiaying Cho, Youngsun Lee, Nakyung Computer Vision Lab CAIDAS IFI University of Würzburg Germany Sony Interactive Entertainment CA United States Huawei Technologies Co. Ltd. China NetEase Games AI Lab Nanjing University of Science and Technology China Tencent China Attrsense Korea Republic of Sanechips Co Ltd Ant Group China East China Normal University China Shopee Dalian University of Technology Xiaomi Inc. China China Zhejiang Dahua Technology Co. Ltd. China Multimedia Department Xiaomi Inc. China Korea Photonic Technology Institute Korea Republic of School of Computer Science and Engineering Southeast University China University Al. I. Cuza Iasi Romania Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Northwestern Polytechnical University China KC Machine Learning Lab CJ OliveNetworks AI Research
This paper introduces a novel benchmark for efficient up-scaling as part of the NTIRE 2023 Real-Time Image Super-Resolution (RTSR) Challenge, which aimed to upscale images from 720p and 1080p resolution to native 4K (... 详细信息
来源: 评论
Crypt-OR:A privacy-preserving system for exemplar-based object-removal over the cloud
TechRxiv
收藏 引用
TechRxiv 2020年
作者: Tanwar, Vishesh Kumar Raman, Balasubramanian Bhargava, Rama Department of Mathematics Machine Vision Lab Department of Computer Science & Engineering Indian Institute of Technology Roorkee India
Object removal is a technique for removing the undesired object(s) and then fill-in the empty region(s) in an image such that the modified image is visually plausible. The existing algorithms are unable to provide pro... 详细信息
来源: 评论
Visual object tracking with discriminative filters and siamese networks: A survey and outlook
arXiv
收藏 引用
arXiv 2021年
作者: Javed, Sajid Danelljan, Martin Khan, Fahad Shahbaz Khan, Muhammad Haris Felsberg, Michael Matas, Jiri The EECS Department Khalifa University of Science and Technology P.O Box: 127788 Abu Dhabi United Arab Emirates The Computer Vision Lab Dept. of Information Technology and Electrical Engineering ETH Zürich Switzerland Computer Vision Department MBZUAI Abu Dhabi United Arab Emirates Computer Vision Laboratory Linköping University Sweden Center for Machine Perception Czech Technical University Prague Czech Republic
Accurate and robust visual object tracking is one of the most challenging and fundamental computer vision problems. It entails estimating the trajectory of the target in an image sequence, given only its initial locat... 详细信息
来源: 评论
Causal Disentanglement for Semantics-Aware Intent Learning in Recommendation
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Xiangmeng Li, Qian Yu, Dianer Cui, Peng Wang, Zhichao Xu, Guandong Data Science and Machine Intelligence Lab Faculty of Engineering and Information Technology University of Technology Sydney NSW Australia The School of Electrical Engineering Computing and Mathematical Sciences Curtin University Perth Australia School of Electrical Engineering and Telecommunications University of New South Wales Sydney Australia The Department of Computer Science and Technology Tsinghua University Beijing100084 China
Traditional recommendation models trained on observational interaction data have generated large impacts in a wide range of applications, it faces bias problems that cover users’ true intent and thus deteriorate the ... 详细信息
来源: 评论