咨询与建议

限定检索结果

文献类型

  • 203 篇 期刊文献
  • 196 篇 会议
  • 1 册 图书

馆藏范围

  • 400 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 260 篇 工学
    • 176 篇 计算机科学与技术...
    • 152 篇 软件工程
    • 67 篇 信息与通信工程
    • 61 篇 光学工程
    • 60 篇 生物医学工程(可授...
    • 57 篇 生物工程
    • 35 篇 电气工程
    • 30 篇 控制科学与工程
    • 21 篇 电子科学与技术(可...
    • 18 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 仪器科学与技术
    • 8 篇 建筑学
    • 7 篇 土木工程
    • 7 篇 交通运输工程
    • 7 篇 网络空间安全
  • 168 篇 理学
    • 82 篇 数学
    • 58 篇 生物学
    • 57 篇 物理学
    • 26 篇 统计学(可授理学、...
    • 14 篇 系统科学
    • 13 篇 化学
  • 76 篇 管理学
    • 47 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 46 篇 医学
    • 39 篇 临床医学
    • 33 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 9 篇 法学
    • 9 篇 社会学
  • 8 篇 农学
  • 5 篇 经济学
  • 5 篇 教育学
  • 2 篇 哲学
  • 2 篇 文学
  • 2 篇 艺术学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 28 篇 computer vision
  • 22 篇 image segmentati...
  • 16 篇 feature extracti...
  • 12 篇 semantics
  • 11 篇 deep learning
  • 10 篇 machine intellig...
  • 9 篇 neural networks
  • 8 篇 data mining
  • 7 篇 computer science
  • 7 篇 gabor filters
  • 7 篇 convolution
  • 7 篇 fuzzy systems
  • 7 篇 computational mo...
  • 7 篇 classification (...
  • 7 篇 forecasting
  • 7 篇 object recogniti...
  • 7 篇 training
  • 6 篇 humans
  • 6 篇 image analysis
  • 6 篇 shape

机构

  • 8 篇 university of sc...
  • 6 篇 hessian ai
  • 6 篇 graduate institu...
  • 6 篇 centre for cogni...
  • 6 篇 key lab. of shan...
  • 6 篇 machine & hybrid...
  • 6 篇 center for brain...
  • 6 篇 nanjing universi...
  • 6 篇 heidelberg
  • 6 篇 department of el...
  • 5 篇 shanghai jiao to...
  • 5 篇 south china univ...
  • 5 篇 centre for medic...
  • 5 篇 universitat pomp...
  • 5 篇 department of ra...
  • 5 篇 university of pe...
  • 5 篇 pazhou lab
  • 5 篇 peng cheng labor...
  • 5 篇 department of pa...
  • 5 篇 department of co...

作者

  • 17 篇 zhi-qiang liu
  • 11 篇 singh koushlendr...
  • 10 篇 timofte radu
  • 9 篇 jha debesh
  • 9 篇 bakas spyridon
  • 9 篇 lu bao-liang
  • 9 篇 nair madhu s.
  • 9 篇 kersting kristia...
  • 8 篇 kofler florian
  • 8 篇 bagci ulas
  • 7 篇 reinke annika
  • 7 篇 menze bjoern
  • 6 篇 chen chen
  • 6 篇 zhao hai
  • 6 篇 nandy anup
  • 6 篇 madhu s. nair
  • 5 篇 galdran adrian
  • 5 篇 zhang dafeng
  • 5 篇 ezhov ivan
  • 5 篇 glocker ben

语言

  • 373 篇 英文
  • 26 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Machine Intelligence Lab Department of Computer Science"
400 条 记 录,以下是51-60 订阅
排序:
label Few Classify Many: N-Shot GAN for Abnormality Screening Using Chest X-Rays
Label Few Classify Many: N-Shot GAN for Abnormality Screeni...
收藏 引用
6th International Conference on Computational intelligence in Pattern Recognition, CIPR 2024
作者: Pandey, Priyam Singh, Satish Kumar Santosh, K.C. Applied Artificial Intelligence Research Lab Department of Computer Science University of South Dakota VermillionSD57069 United States Computer Vision and Biometrics Lab Indian Institute of Information Technology Allahabad Prayagraj211015 India
Typical machine learning models typically demand a substantial volume of data for effective training, ensuring optimal performance during testing. However, these models often fail to specify the extent of data require... 详细信息
来源: 评论
PGAD: Prototype-Guided Adaptive Distillation for Multi-Modal Learning in AD Diagnosis
arXiv
收藏 引用
arXiv 2025年
作者: Li, Yanfei Yin, Teng Shang, Wenyi Liu, Jingyu Wang, Xi Zhao, Kaiyang Machine Intelligence Lab College of Computer Science and Technology Sichuan University Chengdu China Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong Department of Neurosurgery West China Hospital of Sichuan University Chengdu China
Missing modalities pose a major issue in Alzheimer’s Disease (AD) diagnosis, as many subjects lack full imaging data due to cost and clinical constraints. While multi-modal learning leverages complementary informatio... 详细信息
来源: 评论
Quantus: An explainable ai toolkit for responsible evaluation of neural network explanations and beyond
The Journal of Machine Learning Research
收藏 引用
The Journal of machine Learning Research 2023年 第1期24卷 1339-1349页
作者: Anna Hedström Leander Weber Dilyara Bareeva Daniel Krakowczyk Franz Motzkus Wojciech Samek Sebastian Lapuschkin Marina M.-C. Höhne Understandable Machine Intelligence Lab TU Berlin Berlin Germany Department of Artificial Intelligence Fraunhofer Heinrich-Hertz-Institute Berlin Germany Department of Computer Science University of Potsdam Potsdam Germany Department of Electrical Engineering and Computer Science TU Berlin and Department of Artificial Intelligence Fraunhofer Heinrich-Hertz-Institute Berlin Germany Understandable Machine Intelligence Lab TU Berlin Berlin Germany and BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin Germany
The evaluation of explanation methods is a research topic that has not yet been explored deeply, however, since explainability is supposed to strengthen trust in artificial intelligence, it is necessary to systematica... 详细信息
来源: 评论
Graph Convolution Based Efficient Re-Ranking for Visual Retrieval
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Yuqi Qian, Qi Wang, Hongsong Liu, Chong Chen, Weihua Wang, Fan Machine intelligence Technology Lab Alibaba Group China Department of Computer Science and Engineering Southeast University Nanjing China
Visual retrieval tasks such as image retrieval and person re-identification (Re-ID) aim at effectively and thoroughly searching images with similar content or the same identity. After obtaining retrieved examples, re-... 详细信息
来源: 评论
Cross-View Meets Diffusion: Aerial Image Synthesis with Geometry and Text Guidance
arXiv
收藏 引用
arXiv 2024年
作者: Arrabi, Ahmad Zhang, Xiaohan Sultani, Waqas Chen, Chen Wshah, Safwan Vermont Artificial Intelligence Lab. Department of Computer Science University of Vermont United States Intelligent Machines Lab. Information Technology University Center for Research in Computer Vision University of Central Florida United States
Aerial imagery analysis is critical for many research fields. However, obtaining frequent high-quality aerial images is not always accessible due to its high effort and cost requirements. One solution is to use the Gr... 详细信息
来源: 评论
Scalable and Effective Arithmetic Tree Generation for Adder and Multiplier Designs
arXiv
收藏 引用
arXiv 2024年
作者: Lai, Yao Liu, Jinxin Pan, David Z. Luo, Ping Department of Computer Science The University of Hong Kong Hong Kong Machine Intelligence Lab Westlake University Zhejiang Hangzhou China Department of Electrical & Computer Engineering The University of Texas at Austin AustinTX United States
Across a wide range of hardware scenarios, the computational efficiency and physical size of the arithmetic units significantly influence the speed and footprint of the overall hardware system. Nevertheless, the effec... 详细信息
来源: 评论
Two Novel Methods for Multiple Kinect v2 Sensor Calibration  6th
Two Novel Methods for Multiple Kinect v2 Sensor Calibration
收藏 引用
6th International Conference on computer vision and Image Processing, CVIP 2021
作者: Hazra, Sumit Pisipati, Manasa Puhan, Amrit Nandy, Anup Scherer, Rafal Machine Intelligence and Bio-Motion Research Lab Department of Computer Science and Engineering NIT Rourkela Odisha Rourkela769008 India Department of Computer Science and Engineering Koneru Lakshmaiah Education Foundation Telangana Hyderabad500075 India Department of Intelligent Computer Systems Czestochowa University of Technology al. Armii Krajowej 36 Czestochowa42-200 Poland
Camera calibration is an essential step for measuring an instrument’s accuracy by using its parameters. In this paper, we propose two methods for calibrating eight Kinect v2.0 sensors, namely, pairwise and simultaneo... 详细信息
来源: 评论
MDNet: Multi-Decoder Network for Abdominal CT Organs Segmentation
MDNet: Multi-Decoder Network for Abdominal CT Organs Segment...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Debesh Jha Nikhil Kumar Tomar Koushik Biswas Gorkem Durak Matthew Antalek Zheyuan Zhang Bin Wang Md Mostafijur Rahman Hongyi Pan Alpay Medetalibeyoglu Vandan Gorade Abhijit Das Yury Velichko Daniela Ladner Amir Borhani Ulas Bagci Department of Computer Science University of South Dakota Vermillion USA Department of Radiology Machine & Hybrid Intelligence Lab Northwestern University Chicago USA Department of ECE The University of Texas at Austin USA
Accurate segmentation of organs from abdominal CT scans is essential for clinical applications such as diagnosis, treatment planning, and patient monitoring. To handle challenges of heterogeneity in organ shapes, size... 详细信息
来源: 评论
Pipe-BD: Pipelined Parallel Blockwise Distillation
Pipe-BD: Pipelined Parallel Blockwise Distillation
收藏 引用
Design, Automation and Test in Europe Conference and Exhibition
作者: Hongsun Jang Jaewon Jung Jaeyong Song Joonsang Yu Youngsok Kim Jinho Lee Department of Electrical and Computer Engineering Seoul National University Department of Artificial Intelligence Yonsei University Department of Computer Science Yonsei University CLOVA Image Vision CLOVA AI Lab NAVER
Training large deep neural network models is highly challenging due to their tremendous computational and mem-ory requirements. Blockwise distillation provides one promising method towards faster convergence by splitt...
来源: 评论
StaR Maps: Unveiling Uncertainty in Geospatial Relations
StaR Maps: Unveiling Uncertainty in Geospatial Relations
收藏 引用
International Conference on Intelligent Transportation
作者: Benedict Flade Simon Kohaut Julian Eggert Devendra Singh Dhami Kristian Kersting Honda Research Institute Europe GmbH Offenbach Germany Department of Computer Science Artificial Intelligence and Machine Learning Lab TU Darmstadt Darmstadt Germany Department of Mathematics and Computer Science Uncertainty in Artificial Intelligence Group TU Eindhoven Eindhoven MB Netherlands Hessian AI Centre for Cognitive Science German Center for Artificial Intelligence (DFKI)
The growing complexity of intelligent transportation systems and their applications in public spaces has increased the demand for expressive and versatile knowledge representation. While various mapping efforts have a... 详细信息
来源: 评论