咨询与建议

限定检索结果

文献类型

  • 201 篇 期刊文献
  • 198 篇 会议
  • 1 册 图书

馆藏范围

  • 400 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 263 篇 工学
    • 180 篇 计算机科学与技术...
    • 154 篇 软件工程
    • 68 篇 信息与通信工程
    • 62 篇 光学工程
    • 61 篇 生物医学工程(可授...
    • 58 篇 生物工程
    • 34 篇 电气工程
    • 30 篇 控制科学与工程
    • 21 篇 电子科学与技术(可...
    • 18 篇 机械工程
    • 12 篇 化学工程与技术
    • 9 篇 仪器科学与技术
    • 8 篇 建筑学
    • 7 篇 土木工程
    • 7 篇 交通运输工程
    • 7 篇 网络空间安全
  • 172 篇 理学
    • 84 篇 数学
    • 60 篇 生物学
    • 58 篇 物理学
    • 27 篇 统计学(可授理学、...
    • 14 篇 化学
    • 14 篇 系统科学
  • 77 篇 管理学
    • 48 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 47 篇 医学
    • 40 篇 临床医学
    • 34 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 9 篇 法学
    • 9 篇 社会学
  • 7 篇 农学
  • 6 篇 教育学
  • 5 篇 经济学
  • 2 篇 哲学
  • 2 篇 文学
  • 2 篇 艺术学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 28 篇 computer vision
  • 22 篇 image segmentati...
  • 16 篇 feature extracti...
  • 12 篇 deep learning
  • 12 篇 semantics
  • 10 篇 machine intellig...
  • 9 篇 neural networks
  • 8 篇 data mining
  • 8 篇 classification (...
  • 7 篇 computer science
  • 7 篇 gabor filters
  • 7 篇 convolution
  • 7 篇 fuzzy systems
  • 7 篇 computational mo...
  • 7 篇 forecasting
  • 7 篇 object recogniti...
  • 7 篇 training
  • 6 篇 humans
  • 6 篇 image analysis
  • 6 篇 shape

机构

  • 8 篇 university of sc...
  • 6 篇 centre for medic...
  • 6 篇 hessian ai
  • 6 篇 graduate institu...
  • 6 篇 centre for cogni...
  • 6 篇 key lab. of shan...
  • 6 篇 machine & hybrid...
  • 6 篇 center for brain...
  • 6 篇 nanjing universi...
  • 6 篇 heidelberg
  • 6 篇 department of el...
  • 5 篇 south china univ...
  • 5 篇 department of ra...
  • 5 篇 university of pe...
  • 5 篇 pazhou lab
  • 5 篇 department of pa...
  • 5 篇 department of co...
  • 5 篇 school of comput...
  • 4 篇 shanghai jiao to...
  • 4 篇 heidelberg divis...

作者

  • 17 篇 zhi-qiang liu
  • 11 篇 singh koushlendr...
  • 10 篇 timofte radu
  • 10 篇 nair madhu s.
  • 9 篇 jha debesh
  • 9 篇 bakas spyridon
  • 9 篇 lu bao-liang
  • 9 篇 kersting kristia...
  • 9 篇 bagci ulas
  • 8 篇 kofler florian
  • 7 篇 reinke annika
  • 7 篇 menze bjoern
  • 6 篇 chen chen
  • 6 篇 zhao hai
  • 6 篇 nandy anup
  • 5 篇 galdran adrian
  • 5 篇 zhang dafeng
  • 5 篇 ezhov ivan
  • 5 篇 glocker ben
  • 5 篇 reyes mauricio

语言

  • 326 篇 英文
  • 73 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Machine Intelligence Lab Department of Computer Science"
400 条 记 录,以下是81-90 订阅
StaR Maps: Unveiling Uncertainty in Geospatial Relations
arXiv
收藏 引用
arXiv 2024年
作者: Flade, Benedict Kohaut, Simon Eggert, Julian Dhami, Devendra Singh Kersting, Kristian Honda Research Institute Europe GmbH Carl-Legien-Str. 30 Offenbach63073 Germany Artificial Intelligence and Machine Learning Lab Department of Computer Science TU Darmstadt Darmstadt64283 Germany Uncertainty in Artificial Intelligence Group Department of Mathematics and Computer Science TU Eindhoven Eindhoven5600 MB Netherlands Hessian AI Germany Centre for Cognitive Science Germany Germany
The growing complexity of intelligent transportation systems and their applications in public spaces has increased the demand for expressive and versatile knowledge representation. While various mapping efforts have a... 详细信息
来源: 评论
Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report  17th
Efficient Single-Image Depth Estimation on Mobile Devices, ...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Ignatov, Andrey Malivenko, Grigory Timofte, Radu Treszczotko, Lukasz Chang, Xin Ksiazek, Piotr Lopuszynski, Michal Pioro, Maciej Rudnicki, Rafal Smyl, Maciej Ma, Yujie Li, Zhenyu Chen, Zehui Xu, Jialei Liu, Xianming Jiang, Junjun Shi, XueChao Xu, Difan Li, Yanan Wang, Xiaotao Lei, Lei Zhang, Ziyu Wang, Yicheng Huang, Zilong Luo, Guozhong Yu, Gang Fu, Bin Li, Jiaqi Wang, Yiran Huang, Zihao Cao, Zhiguo Conde, Marcos V. Sapozhnikov, Denis Lee, Byeong Hyun Park, Dongwon Hong, Seongmin Lee, Joonhee Lee, Seunggyu Chun, Se Young Computer Vision Lab ETH Zürich Zürich Switzerland AI Witchlabs Zollikerberg Switzerland University of Wuerzburg Wuerzburg Germany TCL Research Europe Warsaw Poland Harbin Institute of Technology Harbin China Xiaomi Inc. Beijing China Tencent GY-Lab Shenzhen China National Key Laboratory of Science and Technology on Multi-Spectral Information Processing School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Department of Electrical and Computer Engineering Seoul National University Seoul Korea Republic of
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficien... 详细信息
来源: 评论
Estimating fish weight growth in aquaponic farming through machine learning techniques
Estimating fish weight growth in aquaponic farming through m...
收藏 引用
Intelligent Technologies (CONIT), International Conference on
作者: Purushottam Kumar Pranav Tiwari U Srinivasulu Reddy CoE in Artificial Intelligence Machine Learning & Data Analytics Lab National Institute of Technology Trichy India Computer Science and Engineering Indian Institute of Information Technology Tiruchirappalli Trichy India Department of Computer Applications Machine Learning & Data Analytics Lab National Institute of Technology Trichy India
Due to the ever-growing population, rapid urbanization, unusual environmental change, and dwindling water supply, the food production from conventional farming techniques won’t be able to keep up with increasing food...
来源: 评论
CUSUM Based Concept Drift Detector for Data Stream Clustering  20
CUSUM Based Concept Drift Detector for Data Stream Clusterin...
收藏 引用
4th International Conference on Big Data and Internet of Things, BDIOT 2020
作者: Namitha, K. Santhosh Kumar, G. Artificial Intelligence and Computer Vision Lab Department of Computer Science Cochin University of Science and Technology Kochi India
The last few decades mark an unprecedented growth in the number of applications producing high-speed data streams. Learning from such fast data streams has many inherent challenges. The dynamic change in the concept o... 详细信息
来源: 评论
Mission Design for Unmanned Aerial Vehicles using Hybrid Probabilistic Logic Programs
Mission Design for Unmanned Aerial Vehicles using Hybrid Pro...
收藏 引用
International Conference on Intelligent Transportation
作者: Simon Kohaut Benedict Flade Devendra Singh Dhami Julian Eggert Kristian Kersting Department of Computer Science Artificial Intelligence and Machine Learning Lab TU Darmstadt Darmstadt Germany Honda Research Institute Europe GmbH Offenbach Germany Hessian AI Centre for Cognitive Science German Center for Artificial Intelligence (DFKI)
Advanced Air Mobility (AAM) is a growing field that demands a deep understanding of legal, spatial and temporal concepts in navigation. Hence, any implementation of AAM is forced to deal with the inherent uncertaintie...
来源: 评论
Unified Source-Free Domain Adaptation
arXiv
收藏 引用
arXiv 2024年
作者: Tang, Song Su, Wenxin Ye, Mao Zhang, Jianwei Zhu, Xiatian The Institute of Machine Intelligence University of Shanghai for Science and Technology Shanghai China The TAMS Group Department of Informatics Universität Hamburg Hamburg Germany The School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu China The Surrey Institute for People-Centred Artificial Intelligence Centre for Vision Speech and Signal Processing University of Surrey Guildford United Kingdom
In the pursuit of transferring a source model to a target domain without access to the source training data, Source-Free Domain Adaptation (SFDA) has been extensively explored across various scenarios, including close... 详细信息
来源: 评论
Neuromorphic Auditory Perception by Neural Spiketrum
arXiv
收藏 引用
arXiv 2023年
作者: Tang, Huajin Gu, Pengjie Wijekoon, Jayawan Alsakkal, M.H.D. Anas Wang, Ziming Shen, Jiangrong Yan, Rui The State Key Lab of Brain-Machine Intelligence College of Computer Science Zhejiang University Hangzhou310027 China The College of Computer Science Zhejiang University Hangzhou310027 China The Department of Electrical & Electronic Engineering University of Manchester United Kingdom The College of Computer Science Zhejiang University of Technology Hangzhou310014 China
Neuromorphic computing holds the promise to achieve the energy efficiency and robust learning performance of biological neural systems. To realize the promised brain-like intelligence, it needs to solve the challenges... 详细信息
来源: 评论
2D Semantic Segmentation of the Prostate Gland in Magnetic Resonance Images using Convolutional Neural Networks
收藏 引用
IFAC-PapersOnLine 2021年 第15期54卷 394-399页
作者: Silvia P. Vacacela Marco E. Benalcázar Artificial Intelligence and Computer Vision Research Lab Department of Computer Science and Informatics Escuela Politécnica Nacional Quito Ecuador
Convolutional Neural Networks is one of the most commonly used methods for automatic prostate segmentation. However, few studies focus on the segmentation of the two main zones of the prostate: the central gland and t... 详细信息
来源: 评论
Improving generative adversarial networks via adversarial learning in latent space  22
Improving generative adversarial networks via adversarial le...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Yang Li Yichuan Mo Liangliang Shi Junchi Yan Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence Shanghai Jiao Tong University Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence Shanghai Jiao Tong University and Key Lab. of Machine Perception (MoE) School of Intelligence Science and Technology Peking University
For Generative Adversarial Networks which map a latent distribution to the target distribution, in this paper, we study how the sampling in latent space can affect the generation performance, especially for images. We...
来源: 评论
EFFICIENT ONLINE labEL CONSISTENT HASHING FOR LARGE-SCALE CROSS-MODAL RETRIEVAL
EFFICIENT ONLINE LABEL CONSISTENT HASHING FOR LARGE-SCALE CR...
收藏 引用
2021 IEEE International Conference on Multimedia and Expo, ICME 2021
作者: Yi, Jinhan Liu, Xin Cheung, Yiu-Ming Xu, Xing Fan, Wentao He, Yi Department of Computer Science and Technology Huaqiao University Xiamen361021 China Xiamen Key Lab. of Computer Vision and Pattern Recognition Fujian Key Lab. of Big Data Intelligence and Security China Department of Computer Science Hong Kong Baptist University Kowloon Hong Kong School of Computer Science and Engineering University of Electronic Science and Technology of China China Provincial Key Laboratory for Computer Information Processing Technology Soochow University China
Existing cross-modal hashing still faces three challenges: (1) Most batch-based methods are unsuitable for processing large-scale and streaming data. (2) Current online methods often suffer from insufficient semantic ... 详细信息
来源: 评论