咨询与建议

限定检索结果

文献类型

  • 415 篇 期刊文献
  • 410 篇 会议
  • 10 册 图书

馆藏范围

  • 835 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 505 篇 工学
    • 322 篇 计算机科学与技术...
    • 268 篇 软件工程
    • 114 篇 生物医学工程(可授...
    • 101 篇 生物工程
    • 97 篇 光学工程
    • 94 篇 信息与通信工程
    • 84 篇 控制科学与工程
    • 65 篇 电气工程
    • 43 篇 电子科学与技术(可...
    • 28 篇 机械工程
    • 27 篇 化学工程与技术
    • 25 篇 仪器科学与技术
    • 13 篇 网络空间安全
    • 12 篇 建筑学
    • 11 篇 土木工程
  • 322 篇 理学
    • 149 篇 数学
    • 117 篇 生物学
    • 93 篇 物理学
    • 57 篇 统计学(可授理学、...
    • 33 篇 系统科学
    • 30 篇 化学
  • 110 篇 管理学
    • 62 篇 图书情报与档案管...
    • 50 篇 管理科学与工程(可...
    • 16 篇 工商管理
  • 84 篇 医学
    • 74 篇 临床医学
    • 61 篇 基础医学(可授医学...
    • 45 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 13 篇 法学
    • 12 篇 社会学
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 9 篇 农学
  • 7 篇 教育学
  • 3 篇 艺术学
  • 2 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 41 篇 computer vision
  • 36 篇 artificial intel...
  • 30 篇 computer science
  • 27 篇 image segmentati...
  • 26 篇 feature extracti...
  • 25 篇 neural networks
  • 25 篇 laboratories
  • 23 篇 robot vision sys...
  • 22 篇 intelligent robo...
  • 21 篇 face recognition
  • 20 篇 machine learning
  • 20 篇 machine intellig...
  • 20 篇 robustness
  • 19 篇 deep learning
  • 19 篇 training
  • 17 篇 machine vision
  • 16 篇 semantics
  • 16 篇 shape
  • 14 篇 computational mo...
  • 13 篇 data mining

机构

  • 20 篇 school of comput...
  • 19 篇 artificial intel...
  • 17 篇 peng cheng labor...
  • 15 篇 machine intellig...
  • 14 篇 department of el...
  • 14 篇 university of ch...
  • 14 篇 department of el...
  • 12 篇 department of co...
  • 12 篇 computational in...
  • 12 篇 key laboratory o...
  • 11 篇 college of compu...
  • 10 篇 imperial college...
  • 10 篇 miit key laborat...
  • 10 篇 college of compu...
  • 9 篇 department of co...
  • 9 篇 guangdong-hong k...
  • 9 篇 key laboratory o...
  • 9 篇 nanhu brain-comp...
  • 9 篇 department of st...
  • 8 篇 university of sc...

作者

  • 21 篇 n.p. papanikolop...
  • 19 篇 lu bao-liang
  • 15 篇 ghojogh benyamin
  • 15 篇 zhi-qiang liu
  • 14 篇 ghodsi ali
  • 14 篇 heng pheng-ann
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 ying tan
  • 12 篇 bao-liang lu
  • 11 篇 zhao hai
  • 11 篇 singh koushlendr...
  • 10 篇 c.e. smith
  • 10 篇 tan ying
  • 9 篇 zheng wei-shi
  • 9 篇 bakas spyridon
  • 9 篇 wei-long zheng
  • 9 篇 mohsen guizani
  • 8 篇 vijayan k. asari
  • 8 篇 huang feihu

语言

  • 764 篇 英文
  • 64 篇 其他
  • 10 篇 中文
检索条件"机构=Computer Vision and Machine Intelligence Laboratory Department of Computer Science"
835 条 记 录,以下是91-100 订阅
排序:
I Can’t Believe It’s Not Better: In-air Movement for Alzheimer Handwriting Synthetic Generation  21st
I Can’t Believe It’s Not Better: In-air Movement for Alzh...
收藏 引用
The 21st International Graphonomics Society Conference, IGS 2023
作者: Bensalah, Asma Parziale, Antonio De Gregorio, Giuseppe Marcelli, Angelo Fornés, Alicia Lladós, Josep Computer Vision Center Universitat Autònoma de Barcelona Bellaterra Spain Computer Science Department Universitat Autònoma de Barcelona Bellaterra Spain DIEM University of Salerno Via Giovanni Paolo II 132 SA Fisciano84084 Italy AI3S Unit CINI National Laboratory of Artificial Intelligence and Intelligent Systems University of Salerno SA Fisciano Italy
During recent years, there here has been a boom in terms of deep learning use for handwriting analysis and recognition. One main application for handwriting analysis is early detection and diagnosis in the health fiel... 详细信息
来源: 评论
Deep learning-based activity recognition and fine motor identification using 2D skeletons of cynomolgus monkeys
收藏 引用
Zoological Research 2023年 第5期44卷 967-980页
作者: Chuxi Li Zifan Xiao Yerong Li Zhinan Chen Xun Ji Yiqun Liu Shufei Feng Zhen Zhang Kaiming Zhang Jianfeng Feng Trevor W.Robbins Shisheng Xiong Yongchang Chen Xiao Xiao School of Information Science and Technology Micro Nano System Center Fudan UniversityShanghai 200433China Department of Anesthesiology Huashan HospitalKey Laboratory of Computational Neuroscience and Brain-Inspired IntelligenceMinistry of EducationBehavioral and Cognitive Neuroscience CenterInstitute of Science and Technology for Brain-Inspired IntelligenceMOE Frontiers Center for Brain ScienceFudan UniversityShanghai 200433China Kuang Yaming Honors School Nanjing UniversityNanjingJiangsu 210023China Shanghai Key Laboratory of Intelligent Information Processing School of Computer ScienceFudan UniversityShanghai 200433China State Key Laboratory of Primate Biomedical Research Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan 650500China New Vision World LLC. Aliso ViejoCalifornia 92656USA Behavioural and Clinical Neuroscience Institute University of CambridgeCambridgeCB21TNUK
Video-based action recognition is becoming a vital tool in clinical research and neuroscientific study for disorder detection and ***,action recognition currently used in non-human primate(NHP)research relies heavily ... 详细信息
来源: 评论
Split-net: Dual transformer encoder with splitting scene text image for script identification
收藏 引用
Pattern Recognition Letters 2025年 196卷 100-108页
作者: Ayush Roy Shivakumara Palaiahnakote Umapada Pal Cheng-Lin Liu Department of Computer Science and Engineering State University of New York Buffalo United States School of Science Engineering and Environment University of Salford Manchester United Kingdom Computer Vision and Pattern Recognition Indian Statistical Institute Kolkata India State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation of the Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China
Script identification is vital for understanding scenes and video images. It is challenging due to high variations in physical appearance, typeface design, complex background, distortion, and significant overlap in th...
来源: 评论
Multi-Task Learning for Fatigue Detection and Face Recognition of Drivers via Tree-Style Space-Channel Attention Fusion Network
arXiv
收藏 引用
arXiv 2024年
作者: Qu, Shulei Gao, Zhenguo Chen, Xiaowei Li, Na Wang, Yakai Wu, Xiaoxiao Department of Computer Science and Technology Huaqiao University Fujian Xiamen361021 China Key Laboratory of Computer Vision Machine Learning of Fujian Provincial Universities Fujian Xiamen361021 China Department of Mechanical Engineering and Automation Huaqiao University Fujian Xiamen361021 China
In driving scenarios, automobile active safety systems are increasingly incorporating deep learning technology. These systems typically need to handle multiple tasks simultaneously, such as detecting fatigue driving a... 详细信息
来源: 评论
Toward Efficient Automated Feature Engineering  39
Toward Efficient Automated Feature Engineering
收藏 引用
39th IEEE International Conference on Data Engineering, ICDE 2023
作者: Wang, Kafeng Wang, Pengyang Xu, Chengzhong Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences University of Macau China Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen China State Key Laboratory of Internet of Things for Smart City Department of Computer and Information Science University of Macau China
Automated Feature Engineering (AFE) refers to automatically generate and select optimal feature sets for downstream tasks, which has achieved great success in real-world applications. Current AFE methods mainly focus ... 详细信息
来源: 评论
Concept-Level Semantic Transfer and Context-Level Distribution Modeling for Few-Shot Segmentation
收藏 引用
IEEE Transactions on Circuits and Systems for Video Technology 2025年
作者: Luo, Yuxuan Chen, Jinpeng Cong, Runmin Ip, Horace Ho Shing Kwong, Sam City University of Hong Kong Department of Computer Science Hong Kong Shandong University School of Control Science and Engineering Jinan250061 China Ministry of Education Key Laboratory of Machine Intelligence and System Control Jinan250061 China Lingnan University Hong Kong
Few-shot segmentation (FSS) methods aim to segment objects using only a few pixel-level annotated samples. Current approaches either derive a generalized class representation from support samples to guide the segmenta... 详细信息
来源: 评论
DuSSS: Dual Semantic Similarity-Supervised vision-Language Model for Semi-Supervised Medical Image Segmentation  39
DuSSS: Dual Semantic Similarity-Supervised Vision-Language M...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Pan, Qingtao Qiao, Wenhao Lou, Jingjiao Ji, Bing Li, Shuo School of Control Science and Engineering Shandong University Jinan China Key Laboratory of Machine Intelligence and System Control Ministry of Education China Department of Computer and Data Science Department of Biomedical Engineering Case Western Reserve University United States
Semi-supervised medical image segmentation (SSMIS) uses consistency learning to regularize model training, which alleviates the burden of pixel-wise manual annotations. However, it often suffers from error supervision... 详细信息
来源: 评论
Class-specific Prompts in vision Transformer for Continual Learning of New Diseases
Class-specific Prompts in Vision Transformer for Continual L...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Defeng Zhao Zejun Ye Wei-Shi Zheng Ruixuan Wang School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing MOE China Department of Network Intelligence Peng Cheng Laboratory Shenzhen China
Current intelligent diagnosis systems are often trained to diagnose a small number of diseases and lack the ability of continually learning new disease knowledge. To have such continual learning ability, the deployed ...
来源: 评论
GSLB: The Graph Structure Learning Benchmark  37
GSLB: The Graph Structure Learning Benchmark
收藏 引用
37th Conference on Neural Information Processing Systems, NeurIPS 2023
作者: Li, Zhixun Wang, Liang Sun, Xin Luo, Yifan Zhu, Yanqiao Chen, Dingshuo Luo, Yingtao Zhou, Xiangxin Liu, Qiang Wu, Shu Yu, Jeffrey Xu Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Hong Kong Center for Research on Intelligent Perception and Computing State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Department of Automation University of Science and Technology of China China School of Cyberspace Security Beijing University of Posts and Telecommunications China Department of Computer Science University of California Los Angeles United States Heinz College of Information Systems and Public Policy Machine Learning Department School of Computer Science Carnegie Mellon University United States
Graph Structure Learning (GSL) has recently garnered considerable attention due to its ability to optimize both the parameters of Graph Neural Networks (GNNs) and the computation graph structure simultaneously. Despit... 详细信息
来源: 评论
Skeleton-in-Context: Unified Skeleton Sequence Modeling with In-Context Learning
Skeleton-in-Context: Unified Skeleton Sequence Modeling with...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Xinshun Wang Zhongbin Fang Xia Li Xiangtai Li Chen Chen Mengyuan Liu Sun Yat-sen University National Key Laboratory of General Artificial Intelligence Peking University Shenzhen Graduate School Department of Computer Science ETH Zurich S-Lab Nanyang Technological University Center for Research in Computer Vision University of Central Florida
In-context learning provides a new perspective for multi-task modeling for vision and NLP. Under this setting, the model can perceive tasks from prompts and accomplish them without any extra task-specific head predict... 详细信息
来源: 评论