咨询与建议

限定检索结果

文献类型

  • 415 篇 期刊文献
  • 410 篇 会议
  • 10 册 图书

馆藏范围

  • 835 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 505 篇 工学
    • 322 篇 计算机科学与技术...
    • 268 篇 软件工程
    • 114 篇 生物医学工程(可授...
    • 101 篇 生物工程
    • 97 篇 光学工程
    • 94 篇 信息与通信工程
    • 84 篇 控制科学与工程
    • 65 篇 电气工程
    • 43 篇 电子科学与技术(可...
    • 28 篇 机械工程
    • 27 篇 化学工程与技术
    • 25 篇 仪器科学与技术
    • 13 篇 网络空间安全
    • 12 篇 建筑学
    • 11 篇 土木工程
  • 322 篇 理学
    • 149 篇 数学
    • 117 篇 生物学
    • 93 篇 物理学
    • 57 篇 统计学(可授理学、...
    • 33 篇 系统科学
    • 30 篇 化学
  • 110 篇 管理学
    • 62 篇 图书情报与档案管...
    • 50 篇 管理科学与工程(可...
    • 16 篇 工商管理
  • 84 篇 医学
    • 74 篇 临床医学
    • 61 篇 基础医学(可授医学...
    • 45 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 13 篇 法学
    • 12 篇 社会学
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 9 篇 农学
  • 7 篇 教育学
  • 3 篇 艺术学
  • 2 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 41 篇 computer vision
  • 36 篇 artificial intel...
  • 30 篇 computer science
  • 27 篇 image segmentati...
  • 26 篇 feature extracti...
  • 25 篇 neural networks
  • 25 篇 laboratories
  • 23 篇 robot vision sys...
  • 22 篇 intelligent robo...
  • 21 篇 face recognition
  • 20 篇 machine learning
  • 20 篇 machine intellig...
  • 20 篇 robustness
  • 19 篇 deep learning
  • 19 篇 training
  • 17 篇 machine vision
  • 16 篇 semantics
  • 16 篇 shape
  • 14 篇 computational mo...
  • 13 篇 data mining

机构

  • 20 篇 school of comput...
  • 19 篇 artificial intel...
  • 17 篇 peng cheng labor...
  • 15 篇 machine intellig...
  • 14 篇 department of el...
  • 14 篇 university of ch...
  • 14 篇 department of el...
  • 12 篇 department of co...
  • 12 篇 computational in...
  • 12 篇 key laboratory o...
  • 11 篇 college of compu...
  • 10 篇 imperial college...
  • 10 篇 miit key laborat...
  • 10 篇 college of compu...
  • 9 篇 department of co...
  • 9 篇 guangdong-hong k...
  • 9 篇 key laboratory o...
  • 9 篇 nanhu brain-comp...
  • 9 篇 department of st...
  • 8 篇 university of sc...

作者

  • 21 篇 n.p. papanikolop...
  • 19 篇 lu bao-liang
  • 15 篇 ghojogh benyamin
  • 15 篇 zhi-qiang liu
  • 14 篇 ghodsi ali
  • 14 篇 heng pheng-ann
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 ying tan
  • 12 篇 bao-liang lu
  • 11 篇 zhao hai
  • 11 篇 singh koushlendr...
  • 10 篇 c.e. smith
  • 10 篇 tan ying
  • 9 篇 zheng wei-shi
  • 9 篇 bakas spyridon
  • 9 篇 wei-long zheng
  • 9 篇 mohsen guizani
  • 8 篇 vijayan k. asari
  • 8 篇 huang feihu

语言

  • 764 篇 英文
  • 64 篇 其他
  • 10 篇 中文
检索条件"机构=Computer Vision and Machine Intelligence Laboratory Department of Computer Science"
835 条 记 录,以下是261-270 订阅
排序:
A DRL-Based Server Selection Scheme for IoT Federated Learning in Sparse LEO Satellite Constellations
A DRL-Based Server Selection Scheme for IoT Federated Learni...
收藏 引用
IEEE Conference on Vehicular Technology (VTC)
作者: Pengxiang Qin Dongyang Xu Chinmay Chakraborty Osama Alfarraj Keping Yu Mohsen Guizani School of Electronic and Information Engineering Xi'an Jiaotong University Xi'an China National Mobile Communications Research Laboratory Southeast University Nanjing China Birla Institute of Technology Mesra India Computer Science Department Community College King Saud University Riyadh Saudi Arabia Graduate School of Science and Engineering Hosei University Tokyo Japan Machine Learning Department Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) UAE
Federated learning (FL) has emerged in sparse low earth orbit (LEO) satellite constellations as a promising architecture for on-board machine learning (ML) model training, aimed at preserving Internet of Things (IoT) ... 详细信息
来源: 评论
Channel and space-based joint rate allocation algorithm
Channel and space-based joint rate allocation algorithm
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Dayong Wang Chao Yuan Yu Sun Xin Lu Hui Guo Frederic Dufaux Ce Zhu Key Laboratory of Big Data Intelligent Computing Chongqing University of Posts and Telecommunications Guangxi Key Laboratory of Machine Vision and Intelligent Control Wuzhou University Chongqing Key Laboratory of Image Cognition Chongqing University of Posts and Telecommunications China Department of Computer Science University of Central Arkansas Faculty of Computing Engineering and Media (CEM) De Montfort University UK Université Paris-Saclay CNRS CentraleSupélec Laboratoire Des Signaux et Systèmes France School of Information and Communication Engineering University of Electronic Science and Technology of China
Rate control is a critical component for image and video compression Particularly under limited network bandwidth conditions, bitrate control is essential to ensure efficient image transmission by effectively allocati... 详细信息
来源: 评论
Environment-Driven Online LiDAR-Camera Extrinsic Calibration
arXiv
收藏 引用
arXiv 2025年
作者: Huang, Zhiwei Li, Jiaqi Zhong, Ping Fan, Rui The Department of Control Science & Engineering The College of Electronics & Information Engineering Tongji University Shanghai201804 China The School of Computer Science and Engineering Central South University Hunan Changsha410083 China The National Key Laboratory of Science and Technology on Automatic Target Recognition National University of Defense Technology Hunan Changsha410073 China The Department of Control Science & Engineering The College of Electronics & Information Engineering Shanghai Research Institute for Intelligent Autonomous Systems The State Key Laboratory of Intelligent Autonomous Systems Frontiers Science Center for Intelligent Autonomous Systems Tongji University Shanghai201804 China The National Key Laboratory of Human-Machine Hybrid Augmented Intelligence Institute of Artificial Intelligence and Robotics Xi’an Jiaotong University Shaanxi Xi’an710049 China
LiDAR-camera extrinsic calibration (LCEC) is the core for data fusion in computer vision. Existing methods typically rely on customized calibration targets or fixed scene types, lacking the flexibility to handle varia... 详细信息
来源: 评论
Is L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Chuwei Li, Shanda He, Di Wang, Liwei School of Mathematical Sciences Peking University China Machine Learning Department School of Computer Science Carnegie Mellon University United States National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University China Center for Data Science Peking University China Zhejiang Lab China
The Physics-Informed Neural Network (PINN) approach is a new and promising way to solve partial differential equations using deep learning. The L2 Physics-Informed Loss is the de-facto standard in training Physics-Inf... 详细信息
来源: 评论
PON: Proposal Optimization Network for Temporal Action Proposal Generation  16th
PON: Proposal Optimization Network for Temporal Action Propo...
收藏 引用
16th International Conference on Intelligent Computing, ICIC 2020
作者: Peng, Xiaoxiao Du, Jixiang Zhang, Hongbo Department of Computer Science and Technology Huaqiao University Quanzhou China Fujian Key Laboratory of Big Data Intelligence and Security Huaqiao University Quanzhou China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University Quanzhou China
Temporal action localization is a challenging task in video understanding. Although great progress has been made in temporal action localization, the most advanced methods still have the problem of sharp performance d... 详细信息
来源: 评论
Recent Advances in Out-of-Distribution Detection with CLIP-Like Models: A Survey
arXiv
收藏 引用
arXiv 2025年
作者: Li, Chaohua Zhang, Enhao Geng, Chuanxing Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China Department of Computer Science Hong Kong Baptist University Hong Kong
Out-of-distribution detection (OOD) is a pivotal task for real-world applications that trains models to identify samples distributionally different from the in-distribution (ID) data during testing. Recent advances in... 详细信息
来源: 评论
Zero-Shot Audio Captioning Using Soft and Hard Prompts
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Yiming Xu, Xuenan Du, Ruoyi Liu, Haohe Dong, Yuan Tan, Zheng-Hua Wang, Wenwu Ma, Zhanyu The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China The Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai200240 China The Department of Electronic Systems Aalborg University Aalborg9220 Denmark The Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
In traditional audio captioning methods, a model is usually trained in a fully supervised manner using a human-annotated dataset containing audio-text pairs and then evaluated on the test sets from the same dataset. S... 详细信息
来源: 评论
Single-domain Generalization in Medical Image Segmentation via Test-time Adaptation from Shape Dictionary
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Quande Chen, Cheng Dou, Qi Heng, Pheng-Ann Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China
Domain generalization typically requires data from multiple source domains for model learning. However, such strong assumption may not always hold in practice, especially in medical field where the data sharing is hig... 详细信息
来源: 评论
Restricted Boltzmann machine and Deep Belief Network: Tutorial and Survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on Boltzmann machine (BM), Restricted Boltzmann machine (RBM), and Deep Belief Network (DBN). We start with the required background on probabilistic graphical models, Markov random ... 详细信息
来源: 评论
Unified Framework for Spectral Dimensionality Reduction, Maximum Variance Unfolding, and Kernel Learning By Semidefinite Programming: Tutorial and Survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on unification of spectral dimensionality reduction methods, kernel learning by Semidefinite Programming (SDP), Maximum Variance Unfolding (MVU) or Semidefinite Embedding (SDE), and... 详细信息
来源: 评论