咨询与建议

限定检索结果

文献类型

  • 415 篇 期刊文献
  • 410 篇 会议
  • 10 册 图书

馆藏范围

  • 835 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 505 篇 工学
    • 322 篇 计算机科学与技术...
    • 268 篇 软件工程
    • 114 篇 生物医学工程(可授...
    • 101 篇 生物工程
    • 97 篇 光学工程
    • 94 篇 信息与通信工程
    • 84 篇 控制科学与工程
    • 65 篇 电气工程
    • 43 篇 电子科学与技术(可...
    • 28 篇 机械工程
    • 27 篇 化学工程与技术
    • 25 篇 仪器科学与技术
    • 13 篇 网络空间安全
    • 12 篇 建筑学
    • 11 篇 土木工程
  • 322 篇 理学
    • 149 篇 数学
    • 117 篇 生物学
    • 93 篇 物理学
    • 57 篇 统计学(可授理学、...
    • 33 篇 系统科学
    • 30 篇 化学
  • 110 篇 管理学
    • 62 篇 图书情报与档案管...
    • 50 篇 管理科学与工程(可...
    • 16 篇 工商管理
  • 84 篇 医学
    • 74 篇 临床医学
    • 61 篇 基础医学(可授医学...
    • 45 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 13 篇 法学
    • 12 篇 社会学
  • 9 篇 经济学
    • 9 篇 应用经济学
  • 9 篇 农学
  • 7 篇 教育学
  • 3 篇 艺术学
  • 2 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 41 篇 computer vision
  • 36 篇 artificial intel...
  • 30 篇 computer science
  • 27 篇 image segmentati...
  • 26 篇 feature extracti...
  • 25 篇 neural networks
  • 25 篇 laboratories
  • 23 篇 robot vision sys...
  • 22 篇 intelligent robo...
  • 21 篇 face recognition
  • 20 篇 machine learning
  • 20 篇 machine intellig...
  • 20 篇 robustness
  • 19 篇 deep learning
  • 19 篇 training
  • 17 篇 machine vision
  • 16 篇 semantics
  • 16 篇 shape
  • 14 篇 computational mo...
  • 13 篇 data mining

机构

  • 20 篇 school of comput...
  • 19 篇 artificial intel...
  • 17 篇 peng cheng labor...
  • 15 篇 machine intellig...
  • 14 篇 department of el...
  • 14 篇 university of ch...
  • 14 篇 department of el...
  • 12 篇 department of co...
  • 12 篇 computational in...
  • 12 篇 key laboratory o...
  • 11 篇 college of compu...
  • 10 篇 imperial college...
  • 10 篇 miit key laborat...
  • 10 篇 college of compu...
  • 9 篇 department of co...
  • 9 篇 guangdong-hong k...
  • 9 篇 key laboratory o...
  • 9 篇 nanhu brain-comp...
  • 9 篇 department of st...
  • 8 篇 university of sc...

作者

  • 21 篇 n.p. papanikolop...
  • 19 篇 lu bao-liang
  • 15 篇 ghojogh benyamin
  • 15 篇 zhi-qiang liu
  • 14 篇 ghodsi ali
  • 14 篇 heng pheng-ann
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 ying tan
  • 12 篇 bao-liang lu
  • 11 篇 zhao hai
  • 11 篇 singh koushlendr...
  • 10 篇 c.e. smith
  • 10 篇 tan ying
  • 9 篇 zheng wei-shi
  • 9 篇 bakas spyridon
  • 9 篇 wei-long zheng
  • 9 篇 mohsen guizani
  • 8 篇 vijayan k. asari
  • 8 篇 huang feihu

语言

  • 764 篇 英文
  • 64 篇 其他
  • 10 篇 中文
检索条件"机构=Computer Vision and Machine Intelligence Laboratory Department of Computer Science"
835 条 记 录,以下是361-370 订阅
排序:
Ferroelectrets:Heterogenous polymer electrets with high piezoelectric sensitivity for transducers
收藏 引用
Journal of Advanced Dielectrics 2023年 第4期13卷 3-26页
作者: Xunlin Qiu Peng Fang Axel Mellinger Ruy Alberto Pisani Altafim Werner Wirges Gunnar Gidion Dmitry Rychkov Shanghai Key Laboratory of Intelligent Sensing and Detection Technology School of Mechanical and Power Engineering East China University of Science and Technology Shanghai 200237P.R.China CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institutes of Advanced Technology Shenzhen 518055P.R.China Department of Physics Central Michigan University 223 Dow Science ComplexMount PleasantMI 48859USA Computer Systems Department Informatics Center Federal University of ParáıbaJoão Pessoa-PBBrazil Department of Physics and Astronomy University of Potsdam PotsdamBrandenburgGermany Laboratory for Electrical Instrumentation Department of Microsystems Engineering-IMTEK University of FreiburgGeorges-Köhler-Allee 106Freiburg 79110Germany Technology and Study Center Weissenburg Deggendorf Institute of Technology WeissenburgBavariaGermany
Nowadays,the demand for advanced functional materials in transducer technology is growing *** materials transform mechanical variables(displacement or force)into electrical signals(charge or voltage)and vice *** are i... 详细信息
来源: 评论
Learning with Group Noise
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Qizhou Yao, Jiangchao Gong, Chen Liu, Tongliang Gong, Mingming Yang, Hongxia Han, Bo Department of Computer Science Hong Kong Baptist University Hong Kong Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of MoE School of Computer Science and Engineering Nanjing University of Science and Technology China Data Analytics and Intelligence Lab Alibaba Group China Department of Computing Hong Kong Polytechnic University Hong Kong Trustworthy Machine Learning Lab School of Computer Science University of Sydney Australia School of Mathematics and Statistics University of Melbourne Australia
machine learning in the context of noise is a challenging but practical setting to plenty of real-world applications. Most of the previous approaches in this area focus on the pairwise relation (casual or correlationa... 详细信息
来源: 评论
A semi-supervised approach to monocular depth estimation, depth refinement, and semantic segmentation of driving scenes using a siamese triple decoder architecture
Informatica (Slovenia)
收藏 引用
Informatica (Slovenia) 2020年 第4期44卷 437-445页
作者: Yusiong, John Paul T. Naval, Prospero C. Computer Vision and Machine Intelligence Group Department of Computer Science College of Engineering University of the Philippines Diliman Quezon City Philippines Division of Natural Sciences and Mathematics University of the Philippines Visayas Tacloban College Tacloban City Leyte Philippines
Depth estimation and semantic segmentation are two fundamental tasks in scene understanding. These two tasks are usually solved separately, although they have complementary properties and are highly correlated. Jointl... 详细信息
来源: 评论
CertainOdom: Uncertainty Weighted Multi-task Learning Model for LiDAR Odometry Estimation
CertainOdom: Uncertainty Weighted Multi-task Learning Model ...
收藏 引用
IEEE International Conference on Robotics and Biomimetics
作者: Leyuan Sun Guanqun Ding Yusuke Yoshiyasu Fumio Kanehiro Department of Intelligent and Mechanical Interaction Systems Graduate School of Science and Technology University of Tsukuba Tsukuba Ibaraki Japan CNRS-AIST Joint Robotics Laboratory (JRL) IRL National Institute of Advanced Industrial Science and Technology (AIST). Digital Architecture Research Center (DARC) National Institute of Advanced Industrial Science and Technology (AIST) Tokyo Japan Computer Vision Research Team Artificial Intelligence Research Center (AIRC) National Institute of Advanced Industrial Science and Technology (AIST) Japan
As a basic and indispensable module, LiDAR odom-etry estimation is widely used in robotics. In recent years, learning-based modeling approaches for odometry estimation have been validated to be feasible. However, it i... 详细信息
来源: 评论
The application of artificial intelligence and radiomics in lung cancer
收藏 引用
Precision Clinical Medicine 2020年 第3期3卷 214-227页
作者: Yaojie Zhou Xiuyuan Xu Lujia Song Chengdi Wang Jixiang Guo Zhang Yi Weimin Li Department of Respiratory and Critical Care Medicine West China School of MedicineWest China HospitalSichuan UniversityChengdu 610041China Machine Intelligence Laboratory College of Computer ScienceSichuan UniversityChengdu 610065China West China School of Public Health Sichuan UniversityChengdu 610041China
Lung cancer is one of the most leading causes of death throughout the world,and there is an urgent requirement for the precision medical management of *** intelligence(AI)consisting of numerous advanced techniques has... 详细信息
来源: 评论
Unsupervised hashing with contrastive information bottleneck
arXiv
收藏 引用
arXiv 2021年
作者: Qiu, Zexuan Su, Qinliang Ou, Zijing Yu, Jianxing Chen, Changyou School of Computer Science and Engineering Sun Yat-sen University Guangzhou China School of Artificial Intelligence Sun Yat-sen University Guangdong China CSE Department SUNY at Buffalo Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China
Many unsupervised hashing methods are implicitly established on the idea of reconstructing the input data, which basically encourages the hashing codes to retain as much information of original data as possible. Howev... 详细信息
来源: 评论
Cross-modal consensus network for weakly supervised temporal action localization
arXiv
收藏 引用
arXiv 2021年
作者: Hong, Fa-Ting Feng, Jia-Chang Xu, Dan Shan, Ying Zheng, Wei-Shi School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Peng Cheng Laboratory Shenzhen China Tencent PCG Shenzhen China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China Department of Computer Science and Engineering HKUST Hong Kong Pazhou Lab Guangzhou China Guangdong Key Laboratory of Information Security Technology Sun Yat-sen University Guangzhou China
Weakly supervised temporal action localization (WS-TAL) is a challenging task that aims to localize action instances in the given video with video-level categorical supervision. Previous works use the appearance and m... 详细信息
来源: 评论
Corrections to “RespiroDynamics: A Multifaceted Dataset for Enhanced Lung Health Assessment Using Deep Learning”
收藏 引用
IEEE Access 2024年 12卷 118831-118831页
作者: Ahmed Sharshar Muhammad Sharshar Hosam Elhady Ahmed Aboeitta Youssef Nafea Yasser Ashraf Mohammad Yaqub Mohsen Guizani Department of Computer Vision Mohamed bin Zayed University of Artificial Intelligence (MBZUAI) Abu Dhabi United Arab Emirates Cyber-Physical Laboratory Egypt-Japan University of Science and Technology (E-JUST) Alexandria Egypt Department of Natural Language Processing MBZUAI Abu Dhabi United Arab Emirates Department of Machine Learning MBZUAI Abu Dhabi United Arab Emirates
Presents corrections to the paper, RespiroDynamics: A Multifaceted Dataset for Enhanced Lung Health Assessment Using Deep Learning.
来源: 评论
IM-META: Influence Maximization Using Node Metadata in Networks With Unknown Topology
arXiv
收藏 引用
arXiv 2021年
作者: Tran, Cong Shin, Won-Yong Spitz, Andreas Department of Computer Science and Engineering Dankook University Yongin16890 Korea Republic of Machine Intelligence & Data Science Laboratory Yonsei University Seoul03722 Korea Republic of Faculty of Information Technology Posts and Telecommunications Institute of Technology Hanoi100000 Viet Nam Yonsei University Seoul03722 Korea Republic of Pohang37673 Korea Republic of Department of Computer and Information Science University of Konstanz Konstanz78457 Germany
Since the structure of complex networks is often unknown, we may identify the most influential seed nodes by exploring only a part of the underlying network, given a small budget for node queries. We propose IM-META, ... 详细信息
来源: 评论
Edgeless-GNN: Unsupervised Representation Learning for Edgeless Nodes
arXiv
收藏 引用
arXiv 2021年
作者: Shin, Yong-Min Tran, Cong Shin, Won-Yong Cao, Xin Yonsei University Seoul03722 Korea Republic of The Department of Computer Science and Engineering Dankook University Yongin16890 Korea Republic of The Machine Intelligence & Data Science Laboratory Yonsei University Seoul03722 Korea Republic of The Faculty of Information Technology Posts and Telecommunications Institute of Technology Hanoi100000 Viet Nam The School of Computer Science and Engineering The University of New South Wales Sydney2052 Australia
We study the problem of embedding edgeless nodes such as users who newly enter the underlying network, while using graph neural networks (GNNs) widely studied for effective representation learning of graphs. Our study... 详细信息
来源: 评论