咨询与建议

限定检索结果

文献类型

  • 29 篇 期刊文献
  • 18 篇 会议

馆藏范围

  • 47 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 33 篇 工学
    • 26 篇 计算机科学与技术...
    • 23 篇 软件工程
    • 16 篇 生物工程
    • 10 篇 信息与通信工程
    • 9 篇 光学工程
    • 7 篇 生物医学工程(可授...
    • 4 篇 控制科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 化学工程与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
  • 26 篇 理学
    • 16 篇 生物学
    • 11 篇 数学
    • 6 篇 物理学
    • 6 篇 统计学(可授理学、...
    • 2 篇 化学
    • 1 篇 系统科学
  • 14 篇 管理学
    • 8 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学

主题

  • 5 篇 deep learning
  • 4 篇 computer vision
  • 2 篇 task analysis
  • 2 篇 image segmentati...
  • 2 篇 numerical simula...
  • 2 篇 predictive model...
  • 2 篇 benchmarking
  • 2 篇 machine learning
  • 2 篇 mathematics
  • 2 篇 floods
  • 2 篇 tumors
  • 2 篇 object recogniti...
  • 2 篇 training
  • 2 篇 network layers
  • 2 篇 deterioration
  • 1 篇 object detection
  • 1 篇 reproducibility
  • 1 篇 semantic segment...
  • 1 篇 human in the loo...
  • 1 篇 reporting practi...

机构

  • 4 篇 division of medi...
  • 3 篇 department of in...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 munich center fo...
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 interactive mach...
  • 2 篇 university of sc...
  • 2 篇 applied computer...
  • 2 篇 universitat autò...
  • 2 篇 cibm center for ...
  • 2 篇 dementia researc...
  • 2 篇 department of nu...
  • 2 篇 department of co...
  • 2 篇 image processing...
  • 2 篇 universidad pomp...
  • 2 篇 department of ne...
  • 2 篇 university of ox...
  • 2 篇 pattern recognit...

作者

  • 5 篇 cremers daniel
  • 4 篇 zimmerer david
  • 4 篇 reid ian
  • 4 篇 jäger paul f.
  • 4 篇 isensee fabian
  • 4 篇 maier-hein klaus...
  • 3 篇 carneiro gustavo
  • 2 篇 seuret mathias
  • 2 篇 yi jinhui
  • 2 篇 galdran adrian
  • 2 篇 sistu ganesh
  • 2 篇 nikolaidou konst...
  • 2 篇 joao carreira
  • 2 篇 rezatofighi hami...
  • 2 篇 deichmann marion
  • 2 篇 ullah ihsan
  • 2 篇 schindler konrad
  • 2 篇 gall juergen
  • 2 篇 köhler gregor
  • 2 篇 qadeer khan

语言

  • 47 篇 英文
检索条件"机构=Computer Vision and Machine Learning Group"
47 条 记 录,以下是1-10 订阅
排序:
An evaluation of synthetic data for deep learning stereo depth algorithms  2017
An evaluation of synthetic data for deep learning stereo dep...
收藏 引用
2017 International Conference on Watermarking and Image Processing, ICWIP 2017
作者: Lee, Kevin Moloney, David Computer Vision and Machine Learning Group Intel/Movidius United States
Stereo vision is a very active field in the realm of computer vision and in recent years Convolutional Neural Networks (CNNs) have proven to be very competitive against the state-of-the-art. However, the performance o... 详细信息
来源: 评论
Cross-dimensional weighting for aggregated deep convolutional features  14
Cross-dimensional weighting for aggregated deep convolutiona...
收藏 引用
computer vision - ECCV 2016 Workshops, Proceedings
作者: Kalantidis, Yannis Mellina, Clayton Osindero, Simon Computer Vision and Machine Learning Group Flickr Yahoo San Francisco United States
We propose a simple and straightforward way of creating powerful image representations via cross-dimensional weighting and aggregation of deep convolutional neural network layer outputs. We first present a generalized... 详细信息
来源: 评论
On the Implementation of Baselines and Lightweight Conditional Model Extrapolation (LIMES) Under Class-Prior Shift  4th
On the Implementation of Baselines and Lightweight Condit...
收藏 引用
Fourth International Workshop on Reproducible Research in Pattern Recognition, RRPR 2022
作者: Tomaszewska, Paulina Lampert, Christoph H. Warsaw University of Technology Faculty of Mathematics and Information Science Warsaw Poland Machine Learning and Computer Vision Group Klosterneuburg Austria
This paper focuses on the implementation details of the baseline methods and a recent lightweight conditional model extrapolation algorithm LIMES [5] for streaming data under class-prior shift. LIMES achieves sup... 详细信息
来源: 评论
Applications of the VOLA Format for 3D Data Knowledge Discovery.
Applications of the VOLA Format for 3D Data Knowledge Discov...
收藏 引用
International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery
作者: Jonathan Byrne Sam Caulfield Léonie Buckley Xiaofan Xu Dexmont Pena Gary Baugh David Moloney Computer Vision and Machine Learning Group Movidius / Intel
VOLA is a compact data structure that unifies computer vision and 3D rendering and allows for the rapid calculation of connected components, per-voxel census/accounting, CNN inference, path planning and obstacle avoid... 详细信息
来源: 评论
Robust Autonomous Vehicle Pursuit Without Expert Steering Labels
收藏 引用
IEEE Robotics and Automation Letters 2023年 第10期8卷 6595-6602页
作者: Pan, Jiaxin Zhou, Changyao Gladkova, Mariia Khan, Qadeer Cremers, Daniel Technical University of Munich Computer Vision Group Garching85748 Germany Munich Data Science Institute Garching85748 Germany Munich Center for Machine Learning Munchen80333 Germany University of Oxford OxfordOX1 3AZ United Kingdom
In this work, we present a learning method for both lateral and longitudinal motion control of an ego-vehicle for the task of vehicle pursuit. The car being controlled does not have a pre-defined route, rather it reac... 详细信息
来源: 评论
LOH and behold: Web-scale visual search, recommendation and clustering using locally optimized hashing  14
LOH and behold: Web-scale visual search, recommendation and ...
收藏 引用
computer vision - ECCV 2016 Workshops, Proceedings
作者: Kalantidis, Yannis Kennedy, Lyndon Nguyen, Huy Mellina, Clayton Shamma, David A. Computer Vision and Machine Learning Group Flickr Yahoo San Francisco United States Futurewei Technologies Inc Santa Clara United States CWI: Centrum Wiskunde and Informatica Amsterdam Netherlands
We propose a novel hashing-based matching scheme, called Locally Optimized Hashing (LOH), based on a state-of-the-art quantization algorithm that can be used for efficient, large-scale search, recommendation, clusteri... 详细信息
来源: 评论
A survey of historical document image datasets
A survey of historical document image datasets
收藏 引用
作者: Nikolaidou, Konstantina Seuret, Mathias Mokayed, Hamam Liwicki, Marcus EISLAB Machine Learning Group Luleå University of Technology Aurorum 1 Norrbotten Luleå97187 Sweden Pattern Recognition Lab Computer Vision Group Friedrich-Alexander-Universität Martensstr. 3 Bavaria Erlangen91058 Germany
This paper presents a systematic literature review of image datasets for document image analysis, focusing on historical documents, such as handwritten manuscripts and early prints. Finding appropriate datasets for hi... 详细信息
来源: 评论
Click-Free, Video-Based Document Capture - Methodology and Evaluation
Click-Free, Video-Based Document Capture - Methodology and E...
收藏 引用
International Conference on Document Analysis and Recognition
作者: Waqas Tariq Nazar Khan Computer Vision & Machine Learning Group Punjab University College of Information Technology Lahore Pakistan
We propose a click-free method for video-based digitization of multi-page documents. The work is targeted at the non-commercial, low-volume, home user. The document is viewed through a mounted camera and the user is o... 详细信息
来源: 评论
Multi-Vehicle Trajectory Prediction at Intersections using State and Intention Information
arXiv
收藏 引用
arXiv 2023年
作者: Zhu, Dekai Khan, Qadeer Cremers, Daniel Computer Vision Group CIT Technical University of Munich This work was funded by the Munich Center for Machine Learning Germany
Traditional approaches to prediction of future trajectory of road agents rely on knowing information about their past trajectory. This work rather relies only on having knowledge of the current state and intended dire... 详细信息
来源: 评论
Constrained parametric min-cuts for automatic object segmentation
Constrained parametric min-cuts for automatic object segment...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Joao Carreira Cristian Sminchisescu Computer Vision and Machine Learning Group Institute for Numerical Simulation Faculty of Mathematics and Natural Sciences University of Bonn Germany
We present a novel framework for generating and ranking plausible objects hypotheses in an image using bottom-up processes and mid-level cues. The object hypotheses are represented as figure-ground segmentations, and ... 详细信息
来源: 评论