咨询与建议

限定检索结果

文献类型

  • 29 篇 期刊文献
  • 18 篇 会议

馆藏范围

  • 47 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 33 篇 工学
    • 26 篇 计算机科学与技术...
    • 23 篇 软件工程
    • 16 篇 生物工程
    • 10 篇 信息与通信工程
    • 9 篇 光学工程
    • 7 篇 生物医学工程(可授...
    • 4 篇 控制科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 化学工程与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
  • 26 篇 理学
    • 16 篇 生物学
    • 11 篇 数学
    • 6 篇 物理学
    • 6 篇 统计学(可授理学、...
    • 2 篇 化学
    • 1 篇 系统科学
  • 14 篇 管理学
    • 8 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学

主题

  • 5 篇 deep learning
  • 4 篇 computer vision
  • 2 篇 task analysis
  • 2 篇 image segmentati...
  • 2 篇 numerical simula...
  • 2 篇 predictive model...
  • 2 篇 benchmarking
  • 2 篇 machine learning
  • 2 篇 mathematics
  • 2 篇 floods
  • 2 篇 tumors
  • 2 篇 object recogniti...
  • 2 篇 training
  • 2 篇 network layers
  • 2 篇 deterioration
  • 1 篇 object detection
  • 1 篇 reproducibility
  • 1 篇 semantic segment...
  • 1 篇 human in the loo...
  • 1 篇 reporting practi...

机构

  • 4 篇 division of medi...
  • 3 篇 department of in...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 munich center fo...
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 interactive mach...
  • 2 篇 university of sc...
  • 2 篇 applied computer...
  • 2 篇 universitat autò...
  • 2 篇 cibm center for ...
  • 2 篇 dementia researc...
  • 2 篇 department of nu...
  • 2 篇 department of co...
  • 2 篇 image processing...
  • 2 篇 universidad pomp...
  • 2 篇 department of ne...
  • 2 篇 university of ox...
  • 2 篇 pattern recognit...

作者

  • 5 篇 cremers daniel
  • 4 篇 zimmerer david
  • 4 篇 reid ian
  • 4 篇 jäger paul f.
  • 4 篇 isensee fabian
  • 4 篇 maier-hein klaus...
  • 3 篇 carneiro gustavo
  • 2 篇 seuret mathias
  • 2 篇 yi jinhui
  • 2 篇 galdran adrian
  • 2 篇 sistu ganesh
  • 2 篇 nikolaidou konst...
  • 2 篇 joao carreira
  • 2 篇 rezatofighi hami...
  • 2 篇 deichmann marion
  • 2 篇 ullah ihsan
  • 2 篇 schindler konrad
  • 2 篇 gall juergen
  • 2 篇 köhler gregor
  • 2 篇 qadeer khan

语言

  • 47 篇 英文
检索条件"机构=Computer Vision and Machine Learning Group"
47 条 记 录,以下是11-20 订阅
排序:
Object recognition as ranking holistic figure-ground hypotheses
Object recognition as ranking holistic figure-ground hypothe...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Fuxin Li Joao Carreira Cristian Sminchisescu Computer Vision and Machine Learning Group Institute for Numerical Simulation Faculty of Mathematics and Natural Sciences University of Bonn Germany
We present an approach to visual object-class recognition and segmentation based on a pipeline that combines multiple, holistic figure-ground hypotheses generated in a bottom-up, object independent process. Decisions ... 详细信息
来源: 评论
LiDAR View Synthesis for Robust Vehicle Navigation Without Expert Labels
LiDAR View Synthesis for Robust Vehicle Navigation Without E...
收藏 引用
International Conference on Intelligent Transportation
作者: Jonathan Schmidt Qadeer Khan Daniel Cremers Computer Vision Group School of Computation Information and Technology Technical University of Munich Munich Center for Machine Learning (MCML) University of Oxford
Deep learning models for self-driving cars require a diverse training dataset to manage critical driving scenarios on public roads safely. This includes having data from divergent trajectories, such as the oncoming tr...
来源: 评论
Multi Agent Navigation in Unconstrained Environments using a Centralized Attention based Graphical Neural Network Controller
Multi Agent Navigation in Unconstrained Environments using a...
收藏 引用
International Conference on Intelligent Transportation
作者: Yining Ma Qadeer Khan Daniel Cremers Computer Vision Group School of Computation Information and Technology Technical University of Munich Munich Center for Machine Learning (MCML) University of Oxford
In this work, we propose a learning based neural model that provides both the longitudinal and lateral control commands to simultaneously navigate multiple vehicles. The goal is to ensure that each vehicle reaches a d...
来源: 评论
CVPR19 Tracking and Detection Challenge: How crowded can it get?
arXiv
收藏 引用
arXiv 2019年
作者: Dendorfer, Patrick Rezatofighi, Hamid Milan, Anton Shi, Javen Cremers, Daniel Reid, Ian Roth, Stefan Schindler, Konrad Leal-Taixa, Laura Dynamic Vision and Learning Group at Tum Munich Germany Australian Institute for Machine Learning and School of Computer Science at University of Adelaide. Amazon Berlin Germany Photogrammetry and Remote Sensing Group at Eth Zurich Switzerland Computer Vision Group at Tum Munich Germany Department of Computer Science Technische Universität Darmstadt Germany
Standardized benchmarks are crucial for the majority of computer vision applications. Although leaderboards and ranking tables should not be over-claimed, benchmarks often provide the most objective measure of perform... 详细信息
来源: 评论
MOT20: A benchmark for multi object tracking in crowded scenes
arXiv
收藏 引用
arXiv 2020年
作者: Dendorfer, Patrick Rezatofighi, Hamid Milan, Anton Shi, Javen Cremers, Daniel Reid, Ian Roth, Stefan Schindler, Konrad Leal-Taixé, Laura Dynamic Vision and Learning Group at TUM Munich Germany Australian Institute for Machine Learning School of Computer Science University of Adelaide Amazon Berlin Germany Photogrammetry and Remote Sensing Group ETH Zurich Switzerland Computer Vision Group at TUM Munich Germany Department of Computer Science Technische Universität Darmstadt Germany
Standardized benchmarks are crucial for the majority of computer vision applications. Although leaderboards and ranking tables should not be over-claimed, benchmarks often provide the most objective measure of perform... 详细信息
来源: 评论
MV-Match: Multi-View Matching for Domain-Adaptive Identification of Plant Nutrient Deficiencies
arXiv
收藏 引用
arXiv 2024年
作者: Yi, Jinhui Luo, Yanan Deichmann, Marion Schaaf, Gabriel Gall, Juergen Computer Vision Group University of Bonn Bonn Germany Plant Nutrition Group University of Bonn Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany
An early, non-invasive, and on-site detection of nutrient deficiencies is critical to enable timely actions to prevent major losses of crops caused by lack of nutrients. While acquiring labeled data is very expensive,...
来源: 评论
Brain tumor cell density estimation from multi-modal MR images based on a synthetic tumor growth model
Brain tumor cell density estimation from multi-modal MR imag...
收藏 引用
15th International Conference on Medical Image Computing and computer-Assisted Intervention, MICCAI 2012
作者: Geremia, Ezequiel Menze, Bjoern H. Prastawa, Marcel Weber, M.-A. Criminisi, Antonio Ayache, Nicholas Asclepios Research Project INRIA Sophia-Antipolis France Computer Science and Artificial Intelligence Laboratory MIT United States Computer Vision Laboratory ETH Zurich Switzerland Scientific Computing and Imaging Institute University of Utah United States Diagnostic and Interventional Radiology Heidelberg University Hospital Germany Machine Learning and Perception Group Microsoft Research Cambridge United Kingdom
This paper proposes to employ a detailed tumor growth model to synthesize labelled images which can then be used to train an efficient data-driven machine learning tumor predictor. Our MR image synthesis step generate... 详细信息
来源: 评论
How to Choose a Reinforcement-learning Algorithm
arXiv
收藏 引用
arXiv 2024年
作者: Bongratz, Fabian Golkov, Vladimir Mautner, Lukas Libera, Luca Della Heetmeyer, Frederik Czaja, Felix Rodemann, Julian Cremers, Daniel Computer Vision Group Technical University of Munich Germany Munich Center for Machine Learning Germany Department of Statistics Ludwig-Maximilians-Universität Munich Germany
The field of reinforcement learning offers a large variety of concepts and methods to tackle sequential decision-making problems. This variety has become so large that choosing an algorithm for a task at hand can be c... 详细信息
来源: 评论
Deep deterministic uncertainty for semantic segmentation
arXiv
收藏 引用
arXiv 2021年
作者: Mukhoti, Jishnu van Amersfoort, Joost Torr, Philip H.S. Gal, Yarin Oxford Applied & Theoretical Machine Learning Group Department of Computer Science University of Oxford Oxford United Kingdom Torr Vision Group Department of Engineering Science University of Oxford Oxford United Kingdom
We extend Deep Deterministic Uncertainty (DDU) (Mukhoti et al., 2021), a method for uncertainty estimation using feature space densities, to semantic segmentation. DDU enables quantifying and disentangling epistemic a... 详细信息
来源: 评论
VICE: variational interpretable concept embeddings  22
VICE: variational interpretable concept embeddings
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Lukas Muttenthaler Charles Y. Zheng Patrick McClure Robert A. Vandermeulen Martin N. Hebart Francisco Pereira Machine Learning Group Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data (BIFOLD) Berlin Germany Machine Learning Team FMRI Facility National Institute of Mental Health Bethesda MD Department of Computer Science Naval Postgraduate School Monterey CA Vision and Computational Cognition Group MPI for Human Cognitive and Brain Sciences Leipzig Germany
A central goal in the cognitive sciences is the development of numerical models for mental representations of object concepts. This paper introduces Variational Interpretable Concept Embeddings (VICE), an approximate ...
来源: 评论