咨询与建议

限定检索结果

文献类型

  • 29 篇 期刊文献
  • 18 篇 会议

馆藏范围

  • 47 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 33 篇 工学
    • 26 篇 计算机科学与技术...
    • 23 篇 软件工程
    • 16 篇 生物工程
    • 10 篇 信息与通信工程
    • 9 篇 光学工程
    • 7 篇 生物医学工程(可授...
    • 4 篇 控制科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 化学工程与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
  • 26 篇 理学
    • 16 篇 生物学
    • 11 篇 数学
    • 6 篇 物理学
    • 6 篇 统计学(可授理学、...
    • 2 篇 化学
    • 1 篇 系统科学
  • 14 篇 管理学
    • 8 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学

主题

  • 5 篇 deep learning
  • 4 篇 computer vision
  • 2 篇 task analysis
  • 2 篇 image segmentati...
  • 2 篇 numerical simula...
  • 2 篇 predictive model...
  • 2 篇 benchmarking
  • 2 篇 machine learning
  • 2 篇 mathematics
  • 2 篇 floods
  • 2 篇 tumors
  • 2 篇 object recogniti...
  • 2 篇 training
  • 2 篇 network layers
  • 2 篇 deterioration
  • 1 篇 object detection
  • 1 篇 reproducibility
  • 1 篇 semantic segment...
  • 1 篇 human in the loo...
  • 1 篇 reporting practi...

机构

  • 4 篇 division of medi...
  • 3 篇 department of in...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 munich center fo...
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 interactive mach...
  • 2 篇 university of sc...
  • 2 篇 applied computer...
  • 2 篇 universitat autò...
  • 2 篇 cibm center for ...
  • 2 篇 dementia researc...
  • 2 篇 department of nu...
  • 2 篇 department of co...
  • 2 篇 image processing...
  • 2 篇 universidad pomp...
  • 2 篇 department of ne...
  • 2 篇 university of ox...
  • 2 篇 pattern recognit...

作者

  • 5 篇 cremers daniel
  • 4 篇 zimmerer david
  • 4 篇 reid ian
  • 4 篇 jäger paul f.
  • 4 篇 isensee fabian
  • 4 篇 maier-hein klaus...
  • 3 篇 carneiro gustavo
  • 2 篇 seuret mathias
  • 2 篇 yi jinhui
  • 2 篇 galdran adrian
  • 2 篇 sistu ganesh
  • 2 篇 nikolaidou konst...
  • 2 篇 joao carreira
  • 2 篇 rezatofighi hami...
  • 2 篇 deichmann marion
  • 2 篇 ullah ihsan
  • 2 篇 schindler konrad
  • 2 篇 gall juergen
  • 2 篇 köhler gregor
  • 2 篇 qadeer khan

语言

  • 47 篇 英文
检索条件"机构=Computer Vision and Machine Learning Group Flickr"
47 条 记 录,以下是21-30 订阅
排序:
Deep deterministic uncertainty for semantic segmentation
arXiv
收藏 引用
arXiv 2021年
作者: Mukhoti, Jishnu van Amersfoort, Joost Torr, Philip H.S. Gal, Yarin Oxford Applied & Theoretical Machine Learning Group Department of Computer Science University of Oxford Oxford United Kingdom Torr Vision Group Department of Engineering Science University of Oxford Oxford United Kingdom
We extend Deep Deterministic Uncertainty (DDU) (Mukhoti et al., 2021), a method for uncertainty estimation using feature space densities, to semantic segmentation. DDU enables quantifying and disentangling epistemic a... 详细信息
来源: 评论
VICE: Variational Interpretable Concept Embeddings
arXiv
收藏 引用
arXiv 2022年
作者: Muttenthaler, Lukas Zheng, Charles Y. McClure, Patrick Vandermeulen, Robert A. Hebart, Martin N. Pereira, Francisco Machine Learning Group Technische Universität Berlin BIFOLD Berlin Germany Machine Learning Team FMRI Facility National Institute of Mental Health BethesdaMD United States Department of Computer Science Naval Postgraduate School MontereyCA United States Vision and Computational Cognition Group MPI for Human Cognitive and Brain Sciences Leipzig Germany The Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany The National Institute of Mental Health BethesdaMD United States
A central goal in the cognitive sciences is the development of numerical models for mental representations of object concepts. This paper introduces Variational Interpretable Concept Embeddings (VICE), an approximate ... 详细信息
来源: 评论
Overcoming Rare-Language Discrimination in Multi-Lingual Sentiment Analysis
Overcoming Rare-Language Discrimination in Multi-Lingual Sen...
收藏 引用
IEEE International Conference on Big Data
作者: Jasmin Lampert Christoph H. Lampert Competence Unit Data Science & Artificial Intelligence AIT Austrian Institute of Technology Vienna Austria Machine Learning and Computer Vision Group Institute of Science and Technology Austria (IST Austria) Klosterneuburg Austria
The digitalization of almost all aspects of our everyday lives has led to unprecedented amounts of data being freely available on the Internet. In particular social media platforms provide rich sources of user-generat... 详细信息
来源: 评论
nnDetection: A Self-configuring Method for Medical Object Detection
arXiv
收藏 引用
arXiv 2021年
作者: Baumgartner, Michael Jäger, Paul F. Isensee, Fabian Maier-Hein, Klaus H. Division of Medical Image Computing German Cancer Research Center Heidelberg Germany Interactive Machine Learning Group German Cancer Research Center Germany HIP Applied Computer Vision Lab. German Cancer Research Center Germany Pattern Analysis and Learning Group Heidelberg University Hospital Germany
Simultaneous localisation and categorization of objects in medical images, also referred to as medical object detection, is of high clinical relevance because diagnostic decisions often depend on rating of objects rat... 详细信息
来源: 评论
GP-CONVCNP: Better generalization for convolutional conditional neural processes on time series data
arXiv
收藏 引用
arXiv 2021年
作者: Petersen, Jens Köhler, Gregor Zimmerer, David Isensee, Fabian Jäger, Paul F. Maier-Hein, Klaus H. Division of Medical Image Computing German Cancer Research Center Heidelberg Germany HIP Applied Computer Vision Lab Division of Medical Image Computing German Cancer Research Center Interactive Machine Learning Group German Cancer Research Center
Neural Processes (NPs) are a family of conditional generative models that are able to model a distribution over functions, in a way that allows them to perform predictions at test time conditioned on a number of conte... 详细信息
来源: 评论
MOT20: A benchmark for multi object tracking in crowded scenes
arXiv
收藏 引用
arXiv 2020年
作者: Dendorfer, Patrick Rezatofighi, Hamid Milan, Anton Shi, Javen Cremers, Daniel Reid, Ian Roth, Stefan Schindler, Konrad Leal-Taixé, Laura Dynamic Vision and Learning Group at TUM Munich Germany Australian Institute for Machine Learning School of Computer Science University of Adelaide Amazon Berlin Germany Photogrammetry and Remote Sensing Group ETH Zurich Switzerland Computer Vision Group at TUM Munich Germany Department of Computer Science Technische Universität Darmstadt Germany
Standardized benchmarks are crucial for the majority of computer vision applications. Although leaderboards and ranking tables should not be over-claimed, benchmarks often provide the most objective measure of perform... 详细信息
来源: 评论
Efficient Deep Models for Real-Time 4K Image Super-Resolution. NTIRE 2023 Benchmark and Report
Efficient Deep Models for Real-Time 4K Image Super-Resolutio...
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern Recognition Workshops, CVPRW 2023
作者: Conde, Marcos V. Zamfir, Eduard Timofte, Radu Motilla, Daniel Liu, Cen Zhang, Zexin Peng, Yunbo Lin, Yue Guo, Jiaming Zou, Xueyi Chen, Yuyi Liu, Yi Hao, Jia Yan, Youliang Zhang, Yuanfan Li, Gen Sun, Lei Kong, Lingshun Bai, Haoran Pan, Jinshan Dong, Jiangxin Tang, Jinhui Ayazoglu, Mustafa Bilecen, Bahri Batuhan Li, Mingxi Zhang, Yuhang Fan, Xianjun Sheng, Yankai Sun, Long Liu, Zibin Gou, Weiran Li, Shaoqing Yi, Ziyao Xiang, Yan Kong, Dehui Xu, Ke Gankhuyag, Ganzorig Yoon, Kihwan Zhang, Jin Yu, Gaocheng Zhang, Feng Wang, Hongbin Zhou, Zhou Chao, Jiahao Gao, Hongfan Gong, Jiali Yang, Zhengfeng Zeng, Zhenbing Chen, Chengpeng Guo, Zichao Park, Anjin Liu, Yuqing Jia, Qi Yu, Hongyuan Yin, Xuanwu Zuo, Kunlong Zhang, Dongyang Fu, Ting Cheng, Zhengxue Zhu, Shiai Zhou, Dajiang Yu, Weichen Ge, Lin Dong, Jiahua Zou, Yajun Wu, Zhuoyuan Han, Binnan Zhang, Xiaolin Zhang, Heng Shao, Ben Zheng, Shaolong Yin, Daheng Chen, Baijun Liu, Mengyang Nistor, Marian-Sergiu Chen, Yi-Chung Huang, Zhi-Kai Chiang, Yuan-Chun Chen, Wei-Ting Yang, Hao-Hsiang Chang, Hua-En Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Vo, Tu Yan, Qingsen Zhu, Yun Su, Jinqiu Zhang, Yanning Zhang, Cheng Luo, Jiaying Cho, Youngsun Lee, Nakyung Computer Vision Lab CAIDAS IFI University of Würzburg Germany Sony Interactive Entertainment CA United States Huawei Technologies Co. Ltd. China NetEase Games AI Lab Nanjing University of Science and Technology China Tencent China Attrsense Korea Republic of Sanechips Co Ltd Ant Group China East China Normal University China Shopee Dalian University of Technology Xiaomi Inc. China China Zhejiang Dahua Technology Co. Ltd. China Multimedia Department Xiaomi Inc. China Korea Photonic Technology Institute Korea Republic of School of Computer Science and Engineering Southeast University China University Al. I. Cuza Iasi Romania Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Northwestern Polytechnical University China KC Machine Learning Lab CJ OliveNetworks AI Research
This paper introduces a novel benchmark for efficient up-scaling as part of the NTIRE 2023 Real-Time Image Super-Resolution (RTSR) Challenge, which aimed to upscale images from 720p and 1080p resolution to native 4K (... 详细信息
来源: 评论
ScanMix: learning from Severe Label Noise via Semantic Clustering and Semi-Supervised learning
arXiv
收藏 引用
arXiv 2021年
作者: Sachdeva, Ragav Cordeiro, Filipe Rolim Belagiannis, Vasileios Reid, Ian Carneiro, Gustavo Visual Geometry Group Department of Engineering Science University of Oxford United Kingdom School of Computer Science Australian Institute for Machine Learning Australia Visual Computing Lab Department of Computing Universidade Federal Rural de Pernambuco Brazil Otto-von-Guericke-Universität Magdeburg Germany Centre for Vision Speech and Signal Processing University of Surrey United Kingdom
We propose a new training algorithm, ScanMix, that explores semantic clustering and semi-supervised learning (SSL) to allow superior robustness to severe label noise and competitive robustness to non-severe label nois... 详细信息
来源: 评论
LongReMix: Robust learning with High Confidence Samples in a Noisy Label Environment
arXiv
收藏 引用
arXiv 2021年
作者: Cordeiro, Filipe R. Sachdeva, Ragav Belagiannis, Vasileios Reid, Ian Carneiro, Gustavo School of Computer Science Australian Institute for Machine Learning Australia Visual Geometry Group Department of Engineering Science University of Oxford United Kingdom Visual Computing Lab Department of Computing Universidade Federal Rural de Pernambuco Brazil Otto-von-Guericke-Universität Magdeburg Germany Centre for Vision Speech and Signal Processing University of Surrey United Kingdom
State-of-the-art noisy-label learning algorithms rely on an unsupervised learning to classify training samples as clean or noisy, followed by a semi-supervised learning (SSL) that minimises the empirical vicinal risk ... 详细信息
来源: 评论
CVPR19 Tracking and Detection Challenge: How crowded can it get?
arXiv
收藏 引用
arXiv 2019年
作者: Dendorfer, Patrick Rezatofighi, Hamid Milan, Anton Shi, Javen Cremers, Daniel Reid, Ian Roth, Stefan Schindler, Konrad Leal-Taixa, Laura Dynamic Vision and Learning Group at Tum Munich Germany Australian Institute for Machine Learning and School of Computer Science at University of Adelaide. Amazon Berlin Germany Photogrammetry and Remote Sensing Group at Eth Zurich Switzerland Computer Vision Group at Tum Munich Germany Department of Computer Science Technische Universität Darmstadt Germany
Standardized benchmarks are crucial for the majority of computer vision applications. Although leaderboards and ranking tables should not be over-claimed, benchmarks often provide the most objective measure of perform... 详细信息
来源: 评论