咨询与建议

限定检索结果

文献类型

  • 38 篇 期刊文献
  • 22 篇 会议

馆藏范围

  • 60 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 40 篇 工学
    • 29 篇 计算机科学与技术...
    • 29 篇 软件工程
    • 15 篇 信息与通信工程
    • 14 篇 生物工程
    • 11 篇 光学工程
    • 9 篇 生物医学工程(可授...
    • 5 篇 控制科学与工程
    • 4 篇 电气工程
    • 3 篇 化学工程与技术
    • 3 篇 交通运输工程
    • 2 篇 安全科学与工程
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 船舶与海洋工程
  • 22 篇 理学
    • 14 篇 生物学
    • 8 篇 物理学
    • 3 篇 化学
    • 2 篇 数学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 14 篇 管理学
    • 8 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 2 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 4 篇 object detection
  • 3 篇 benchmarking
  • 2 篇 image enhancemen...
  • 2 篇 support vector m...
  • 2 篇 database systems
  • 2 篇 deep learning
  • 2 篇 image segmentati...
  • 2 篇 face recognition
  • 2 篇 optimization
  • 2 篇 accuracy
  • 2 篇 convolutional ne...
  • 1 篇 conferences
  • 1 篇 white noise
  • 1 篇 chemical activat...
  • 1 篇 reinforcement le...
  • 1 篇 uncertainty guid...
  • 1 篇 turing machines
  • 1 篇 uncertainty self...
  • 1 篇 three-dimensiona...
  • 1 篇 trusted margin l...

机构

  • 8 篇 christian dopple...
  • 7 篇 institute for co...
  • 7 篇 christian dopple...
  • 5 篇 christian dopple...
  • 5 篇 institute of com...
  • 3 篇 department of in...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 college of compu...
  • 3 篇 key laboratory o...
  • 3 篇 college of compu...
  • 3 篇 lausanne
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 school of comput...
  • 2 篇 university of sc...
  • 2 篇 universitat autò...
  • 2 篇 cibm center for ...
  • 2 篇 dementia researc...
  • 2 篇 department of nu...

作者

  • 11 篇 bischof horst
  • 10 篇 possegger horst
  • 6 篇 lin wei
  • 5 篇 fruhwirth-reisin...
  • 5 篇 gao zhenguo
  • 5 篇 mirza muhammad j...
  • 5 篇 horst possegger
  • 5 篇 horst bischof
  • 5 篇 wei lin
  • 5 篇 mateusz kozinski
  • 4 篇 kozinski mateusz
  • 4 篇 zheng wenming
  • 4 篇 zhao guoying
  • 4 篇 m. jehanzeb mirz...
  • 3 篇 wang yakai
  • 3 篇 huang xiaohua
  • 2 篇 peng shu-juan
  • 2 篇 micorek jakub
  • 2 篇 jiang yang
  • 2 篇 chen hu

语言

  • 55 篇 英文
  • 5 篇 其他
检索条件"机构=Computer Vision and Machine Learning Laboratory"
60 条 记 录,以下是21-30 订阅
排序:
ActMAD: Activation Matching to Align Distributions for Test-Time-Training
arXiv
收藏 引用
arXiv 2022年
作者: Mirza, Muhammad Jehanzeb Soneira, Pol Jané Lin, Wei Kozinski, Mateusz Possegger, Horst Bischof, Horst Institute for Computer Graphics and Vision TU Graz Austria Christian Doppler Laboratory for Embedded Machine Learning Institute of Control Systems KIT Germany Christian Doppler Laboratory for Semantic 3D Computer Vision
Test-Time-Training (TTT) is an approach to cope with out-of-distribution (OOD) data by adapting a trained model to distribution shifts occurring at test-time. We propose to perform this adaptation via Activation Match... 详细信息
来源: 评论
MATE: Masked Autoencoders are Online 3D Test-Time Learners
MATE: Masked Autoencoders are Online 3D Test-Time Learners
收藏 引用
International Conference on computer vision (ICCV)
作者: M. Jehanzeb Mirza Inkyu Shin Wei Lin Andreas Schriebl Kunyang Sun Jaesung Choe Mateusz Kozinski Horst Possegger In So Kweon Kuk-Jin Yoon Horst Bischof Institute for Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Embedded Machine Learning Korea Advanced Institute of Science and Technology (KAIST) South Korea Southeast University China
Our MATE is the first Test-Time-Training (TTT) method designed for 3D data, which makes deep networks trained for point cloud classification robust to distribution shifts occurring in test data. Like existing TTT meth...
来源: 评论
MATE: Masked Autoencoders are Online 3D Test-Time Learners
arXiv
收藏 引用
arXiv 2022年
作者: Mirza, M. Jehanzeb Shin, Inkyu Lin, Wei Schriebl, Andreas Sun, Kunyang Choe, Jaesung Possegger, Horst Kozinski, Mateusz Kweon, In So Yoon, Kuk-Jin Bischof, Horst Institute for Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Embedded Machine Learning Korea Republic of Southeast University China
Our MATE is the first Test-Time-Training (TTT) method designed for 3D data, which makes deep networks trained for point cloud classification robust to distribution shifts occurring in test data. Like existing TTT meth... 详细信息
来源: 评论
Joint Optimization of Data Routing and Energy Cooperation for Broadcastive Wpt Assisted Data Collection in Wsns
SSRN
收藏 引用
SSRN 2023年
作者: Jiang, Yang Gao, Zhenguo Wang, Yakai Xu, Qinglong Gan, Qiren Kaswan, Amar College of Computer Science and Technology in Huaqiao University Fujian Xiamen China Key Laboratory of Computer Vision Machine Learning of Fujian Province University Fujian Xiamen China Dhanbad India Hexagon Geosystems Services India Pvt. Ltd India
In Energy Harvesting assisted Wireless Sensor Networks (EH-WSNs), Wireless Power Transfer (WPT) technology plays a vital role in extending network lifespan by enabling energy cooperation among nodes. Nevertheless, exi... 详细信息
来源: 评论
Support-Query Prototype Fusion Network for Few-shot Medical Image Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Xiaoxiao Gao, Zhenguo Chen, Xiaowei Wang, Yakai Qu, Shulei Li, Na Department of Computer Science and Technology Huaqiao University No.668 Jimei Avenue Fujian Xiamen361021 China Department of Mechanical Engineering and Automation Huaqiao University No.668 Jimei Avenue Fujian Xiamen361021 China Key Laboratory of Computer Vision and Machine Learning Fujian Provincial Universities Fujian Xiamen361021 China
In recent years, deep learning based on Convolutional Neural Networks (CNNs) has achieved remarkable success in many applications. However, their heavy reliance on extensive labeled data and limited generalization abi... 详细信息
来源: 评论
Video Test-Time Adaptation for Action Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Lin, Wei Mirza, Muhammad Jehanzeb Kozinski, Mateusz Possegger, Horst Kuehne, Hilde Bischof, Horst Institute for Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Semantic 3D Computer Vision Christian Doppler Laboratory for Embedded Machine Learning Goethe University Frankfurt Germany MIT-IBM Watson AI Lab United States
Although action recognition systems can achieve top performance when evaluated on in-distribution test points, they are vulnerable to unanticipated distribution shifts in test data. However, test-time adaptation of vi... 详细信息
来源: 评论
FAST3D: Flow-aware self-training for 3D object detectors
arXiv
收藏 引用
arXiv 2021年
作者: Fruhwirth-Reisinger, Christian Opitz, Michael Possegger, Horst Bischof, Horst Christian Doppler Laboratory for Embedded Machine Learning Institute of Computer Graphics and Vision Graz University of Technology
In the field of autonomous driving, self-training is widely applied to mitigate distribution shifts in LiDAR-based 3D object detectors. This eliminates the need for expensive, high-quality labels whenever the environm... 详细信息
来源: 评论
The Norm Must Go On: Dynamic Unsupervised Domain Adaptation by Normalization
arXiv
收藏 引用
arXiv 2021年
作者: Mirza, Muhammad Jehanzeb Micorek, Jakub Possegger, Horst Bischof, Horst Institute for Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Embedded Machine Learning Austria
Domain adaptation is crucial to adapt a learned model to new scenarios, such as domain shifts or changing data distributions. Current approaches usually require a large amount of labeled or unlabeled data from the shi... 详细信息
来源: 评论
Diffusion Posterior Proximal Sampling for Image Restoration
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Hongjie He, Linchao Zhang, Mingqin Chen, Dongdong Luo, Kunming Luo, Mengting Zhou, Ji-Zhe Chen, Hu Lv, Jiancheng College of Computer Science Sichuan University Chengdu China National Key Laboratory of Fundamental Science on Synthetic Vision Sichuan University Chengdu China Heriot-Watt University Edinburgh United Kingdom Hong Kong University of Science and Technology Hong Kong Engineering Research Center of Machine Learning and Industry Intelligence Ministry of Education China
Diffusion models have demonstrated remarkable efficacy in generating high-quality samples. Existing diffusion-based image restoration algorithms exploit pre-trained diffusion models to leverage data priors, yet they s... 详细信息
来源: 评论
An Efficient Domain-Incremental learning Approach to Drive in All Weather Conditions
arXiv
收藏 引用
arXiv 2022年
作者: Mirza, Muhammad Jehanzeb Masana, Marc Possegger, Horst Bischof, Horst Institute of Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Embedded Machine Learning Austria TU Graz SAL Dependable Embedded Systems Lab Silicon Austria Labs Austria
Although deep neural networks enable impressive visual perception performance for autonomous driving, their robustness to varying weather conditions still requires attention. When adapting these models for changed env... 详细信息
来源: 评论