咨询与建议

限定检索结果

文献类型

  • 106 篇 期刊文献
  • 70 篇 会议
  • 1 册 图书

馆藏范围

  • 177 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 118 篇 工学
    • 82 篇 计算机科学与技术...
    • 75 篇 软件工程
    • 32 篇 生物工程
    • 22 篇 信息与通信工程
    • 21 篇 生物医学工程(可授...
    • 20 篇 光学工程
    • 16 篇 控制科学与工程
    • 13 篇 化学工程与技术
    • 10 篇 电气工程
    • 7 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 交通运输工程
    • 4 篇 环境科学与工程(可...
    • 3 篇 材料科学与工程(可...
    • 3 篇 电子科学与技术(可...
    • 3 篇 土木工程
    • 3 篇 航空宇航科学与技...
  • 76 篇 理学
    • 33 篇 生物学
    • 28 篇 数学
    • 18 篇 物理学
    • 13 篇 化学
    • 13 篇 统计学(可授理学、...
  • 29 篇 管理学
    • 17 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 12 篇 医学
    • 11 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 农学
  • 2 篇 教育学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 12 篇 machine learning
  • 9 篇 deep learning
  • 6 篇 computer vision
  • 5 篇 image segmentati...
  • 5 篇 semantics
  • 5 篇 training
  • 4 篇 object detection
  • 4 篇 machine vision
  • 4 篇 robot sensing sy...
  • 3 篇 three-dimensiona...
  • 3 篇 anomaly detectio...
  • 3 篇 data mining
  • 3 篇 human robot inte...
  • 3 篇 benchmarking
  • 3 篇 laser radar
  • 3 篇 tumors
  • 3 篇 accuracy
  • 3 篇 data models
  • 3 篇 robustness
  • 2 篇 neurons

机构

  • 5 篇 heidelberg
  • 4 篇 centre for medic...
  • 4 篇 munich center fo...
  • 4 篇 division of medi...
  • 3 篇 christian dopple...
  • 3 篇 computer science...
  • 3 篇 department of in...
  • 3 篇 paderborn univer...
  • 3 篇 heidelberg divis...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 department of ra...
  • 3 篇 lausanne
  • 3 篇 ihu strasbourg s...
  • 3 篇 computer vision ...
  • 3 篇 centre for biome...
  • 3 篇 department of pa...
  • 3 篇 valeo vision sys...
  • 3 篇 interactive mach...
  • 3 篇 faculty of mathe...

作者

  • 11 篇 behnke sven
  • 6 篇 sven behnke
  • 6 篇 jäger paul f.
  • 5 篇 reid ian
  • 5 篇 isensee fabian
  • 5 篇 cremers daniel
  • 4 篇 bakas spyridon
  • 4 篇 memmesheimer rap...
  • 4 篇 zimmerer david
  • 4 篇 petersen jens
  • 4 篇 maier-hein klaus...
  • 3 篇 ming dong
  • 3 篇 van gool luc
  • 3 篇 galdran adrian
  • 3 篇 hüllermeier eyke
  • 3 篇 manjeet rege
  • 3 篇 hammer barbara
  • 3 篇 reinke annika
  • 3 篇 glocker ben
  • 3 篇 van ginneken bra...

语言

  • 167 篇 英文
  • 10 篇 其他
检索条件"机构=Computer Vision and Machine Learning Systems Group"
177 条 记 录,以下是1-10 订阅
排序:
A Probabilistic Adversarial Autoencoder for Novelty Detection: Leveraging Lightweight Design and Reconstruction Loss
收藏 引用
IEEE Access 2025年 13卷 98530-98541页
作者: Muhammad Asad Ihsan Ullah Muhammad Adeel Hafeez Ganesh Sistu Michael G. Madden Machine Learning Research Group School of Computer Science University of Galway Galway Ireland Valeo Vision Systems Tuam Ireland
A novelty detection task involves identifying whether a data point is an outlier, given a training dataset that primarily captures the distribution of inliers. The novel class is usually absent, poorly sampled, or not... 详细信息
来源: 评论
On the Implementation of Baselines and Lightweight Conditional Model Extrapolation (LIMES) Under Class-Prior Shift  4th
On the Implementation of Baselines and Lightweight Condit...
收藏 引用
Fourth International Workshop on Reproducible Research in Pattern Recognition, RRPR 2022
作者: Tomaszewska, Paulina Lampert, Christoph H. Warsaw University of Technology Faculty of Mathematics and Information Science Warsaw Poland Machine Learning and Computer Vision Group Klosterneuburg Austria
This paper focuses on the implementation details of the baseline methods and a recent lightweight conditional model extrapolation algorithm LIMES [5] for streaming data under class-prior shift. LIMES achieves sup... 详细信息
来源: 评论
Person Segmentation and Action Classification for Multi-Channel Hemisphere Field of View LiDAR Sensors
Person Segmentation and Action Classification for Multi-Chan...
收藏 引用
2025 IEEE/SICE International Symposium on System Integration, SII 2025
作者: Seliunina, Svetlana Otelepko, Artem Memmesheimer, Raphael Behnke, Sven University of Bonn Autonomous Intelligent Systems Group Computer Science Institute VI - Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics Germany
Robots need to perceive persons in their surroundings for safety and to interact with them. In this paper, we present a person segmentation and action classification approach that operates on 3D scans of hemisphere fi... 详细信息
来源: 评论
A Comparison of Prompt Engineering Techniques for Task Planning and Execution in Service Robotics  23
A Comparison of Prompt Engineering Techniques for Task Plann...
收藏 引用
23rd IEEE-RAS International Conference on Humanoid Robots, Humanoids 2024
作者: Bode, Jonas Pätzold, Bastian Memmesheimer, Raphael Behnke, Sven Computer Science Institute Vi - Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics University of Bonn Autonomous Intelligent Systems group Germany
Recent advances in Large Language Models (LLMs) have been instrumental in autonomous robot control and human-robot interaction by leveraging their vast general knowledge and capabilities to understand and reason acros... 详细信息
来源: 评论
Robust Autonomous Vehicle Pursuit Without Expert Steering Labels
收藏 引用
IEEE Robotics and Automation Letters 2023年 第10期8卷 6595-6602页
作者: Pan, Jiaxin Zhou, Changyao Gladkova, Mariia Khan, Qadeer Cremers, Daniel Technical University of Munich Computer Vision Group Garching85748 Germany Munich Data Science Institute Garching85748 Germany Munich Center for Machine Learning Munchen80333 Germany University of Oxford OxfordOX1 3AZ United Kingdom
In this work, we present a learning method for both lateral and longitudinal motion control of an ego-vehicle for the task of vehicle pursuit. The car being controlled does not have a pre-defined route, rather it reac... 详细信息
来源: 评论
Instance Space Analysis and Item Response Theory for Algorithm Testing
Instance Space Analysis and Item Response Theory for Algorit...
收藏 引用
2024 Genetic and Evolutionary Computation Conference Companion, GECCO 2024 Companion
作者: Smith-Miles, Kate Muñoz, Mario Andrés Kandanaarachchi, Sevvandi CarltonVIC Australia School of Mathematics and Statistics The University of Melbourne ParkvilleVIC Australia School of Computer and Information Systems The University of Melbourne ParkvilleVIC Australia Statistical Machine Learning Group Data61 CSIRO ClaytonVIC Australia
来源: 评论
Multi-Vehicle Trajectory Prediction at Intersections using State and Intention Information
arXiv
收藏 引用
arXiv 2023年
作者: Zhu, Dekai Khan, Qadeer Cremers, Daniel Computer Vision Group CIT Technical University of Munich This work was funded by the Munich Center for Machine Learning Germany
Traditional approaches to prediction of future trajectory of road agents rely on knowing information about their past trajectory. This work rather relies only on having knowledge of the current state and intended dire... 详细信息
来源: 评论
Beyond the Known: Adversarial Autoencoders in Novelty Detection
arXiv
收藏 引用
arXiv 2024年
作者: Asad, Muhammad Ullah, Ihsan Sistu, Ganesh Madden, Michael G. Machine Learning Research Group School of Computer Science University of Galway Ireland Insight SFI Research Centre for Data Analytics University of Galway Ireland Valeo Vision Systems Tuam Ireland
In novelty detection, the goal is to decide if a new data point should be categorized as an inlier or an outlier, given a training dataset that primarily captures the inlier distribution. Recent approaches typically u... 详细信息
来源: 评论
Depth Estimation using Weighted-loss and Transfer learning
arXiv
收藏 引用
arXiv 2024年
作者: Hafeez, Muhammad Adeel Madden, Michael G. Sistu, Ganesh Ullah, Ihsan Machine Learning Research Group School of Computer Science University of Galway Ireland Insight SFI Research Centre for Data Analytics University of Galway Ireland Valeo Vision Systems Tuam Ireland
Depth estimation from 2D images is a common computer vision task that has applications in many fields including autonomous vehicles, scene understanding and robotics. The accuracy of a supervised depth estimation meth... 详细信息
来源: 评论
MV-Match: Multi-View Matching for Domain-Adaptive Identification of Plant Nutrient Deficiencies
arXiv
收藏 引用
arXiv 2024年
作者: Yi, Jinhui Luo, Yanan Deichmann, Marion Schaaf, Gabriel Gall, Juergen Computer Vision Group University of Bonn Bonn Germany Plant Nutrition Group University of Bonn Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany
An early, non-invasive, and on-site detection of nutrient deficiencies is critical to enable timely actions to prevent major losses of crops caused by lack of nutrients. While acquiring labeled data is very expensive,...
来源: 评论