咨询与建议

限定检索结果

文献类型

  • 106 篇 期刊文献
  • 70 篇 会议
  • 1 册 图书

馆藏范围

  • 177 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 118 篇 工学
    • 82 篇 计算机科学与技术...
    • 75 篇 软件工程
    • 32 篇 生物工程
    • 22 篇 信息与通信工程
    • 21 篇 生物医学工程(可授...
    • 20 篇 光学工程
    • 16 篇 控制科学与工程
    • 13 篇 化学工程与技术
    • 10 篇 电气工程
    • 7 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 交通运输工程
    • 4 篇 环境科学与工程(可...
    • 3 篇 材料科学与工程(可...
    • 3 篇 电子科学与技术(可...
    • 3 篇 土木工程
    • 3 篇 航空宇航科学与技...
  • 76 篇 理学
    • 33 篇 生物学
    • 28 篇 数学
    • 18 篇 物理学
    • 13 篇 化学
    • 13 篇 统计学(可授理学、...
  • 29 篇 管理学
    • 17 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 12 篇 医学
    • 11 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 农学
  • 2 篇 教育学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 12 篇 machine learning
  • 9 篇 deep learning
  • 6 篇 computer vision
  • 5 篇 image segmentati...
  • 5 篇 semantics
  • 5 篇 training
  • 4 篇 object detection
  • 4 篇 machine vision
  • 4 篇 robot sensing sy...
  • 3 篇 three-dimensiona...
  • 3 篇 anomaly detectio...
  • 3 篇 data mining
  • 3 篇 human robot inte...
  • 3 篇 benchmarking
  • 3 篇 laser radar
  • 3 篇 tumors
  • 3 篇 accuracy
  • 3 篇 data models
  • 3 篇 robustness
  • 2 篇 neurons

机构

  • 5 篇 heidelberg
  • 4 篇 centre for medic...
  • 4 篇 munich center fo...
  • 4 篇 division of medi...
  • 3 篇 christian dopple...
  • 3 篇 computer science...
  • 3 篇 department of in...
  • 3 篇 paderborn univer...
  • 3 篇 heidelberg divis...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 department of ra...
  • 3 篇 lausanne
  • 3 篇 ihu strasbourg s...
  • 3 篇 computer vision ...
  • 3 篇 centre for biome...
  • 3 篇 department of pa...
  • 3 篇 valeo vision sys...
  • 3 篇 interactive mach...
  • 3 篇 faculty of mathe...

作者

  • 11 篇 behnke sven
  • 6 篇 sven behnke
  • 6 篇 jäger paul f.
  • 5 篇 reid ian
  • 5 篇 isensee fabian
  • 5 篇 cremers daniel
  • 4 篇 bakas spyridon
  • 4 篇 memmesheimer rap...
  • 4 篇 zimmerer david
  • 4 篇 petersen jens
  • 4 篇 maier-hein klaus...
  • 3 篇 ming dong
  • 3 篇 van gool luc
  • 3 篇 galdran adrian
  • 3 篇 hüllermeier eyke
  • 3 篇 manjeet rege
  • 3 篇 hammer barbara
  • 3 篇 reinke annika
  • 3 篇 glocker ben
  • 3 篇 van ginneken bra...

语言

  • 167 篇 英文
  • 10 篇 其他
检索条件"机构=Computer Vision and Machine Learning Systems Group"
177 条 记 录,以下是91-100 订阅
排序:
Anomaly detection in dynamic graphs via transformer
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Yixin Pan, Shirui Wang, Yu Guang Xiong, Fei Wang, Liang Chen, Qingfeng Lee, Vincent C.S. the Department of Data Science and AI Faculty of IT Monash University ClaytonVIC3800 Australia Shanghai Jiao Tong University Institute of Natural Sciences School of Mathematical Sciences the Max Planck Institute for Mathematics in Sciences Mathematics Machine Learning group Key Laboratory of Communication and Information Systems Beijing Municipal Commission of Education Beijing Jiaotong University Beijing100044 China School of Computer Science Northwestern Polytechnical University Xi’an10072 China School of Computer Electronic and Information Guangxi University Nanning530004 China
Detecting anomalies for dynamic graphs has drawn increasing attention due to their wide applications in social networks, e-commerce, and cybersecurity. Recent deep learning-based approaches have shown promising result... 详细信息
来源: 评论
CVPR19 Tracking and Detection Challenge: How crowded can it get?
arXiv
收藏 引用
arXiv 2019年
作者: Dendorfer, Patrick Rezatofighi, Hamid Milan, Anton Shi, Javen Cremers, Daniel Reid, Ian Roth, Stefan Schindler, Konrad Leal-Taixa, Laura Dynamic Vision and Learning Group at Tum Munich Germany Australian Institute for Machine Learning and School of Computer Science at University of Adelaide. Amazon Berlin Germany Photogrammetry and Remote Sensing Group at Eth Zurich Switzerland Computer Vision Group at Tum Munich Germany Department of Computer Science Technische Universität Darmstadt Germany
Standardized benchmarks are crucial for the majority of computer vision applications. Although leaderboards and ranking tables should not be over-claimed, benchmarks often provide the most objective measure of perform... 详细信息
来源: 评论
Feature relevance bounds for ordinal regression
arXiv
收藏 引用
arXiv 2019年
作者: Pfannschmidt, Lukas Jakob, Jonathan Biehl, Michael Tino, Peter Hammer, Barbara Machine Learning Group Bielefeld University Germany Intelligent Systems Group University of Groningen Netherlands Computer Science University of Birmingham United Kingdom
The increasing occurrence of ordinal data, mainly sociodemographic, led to a renewed research interest in ordinal regression, i.e. the prediction of ordered classes. Besides model accuracy, the interpretation of these... 详细信息
来源: 评论
Multi-label Classification with High-rank and High-order Label Correlations
arXiv
收藏 引用
arXiv 2022年
作者: Si, Chongjie Jia, Yuheng Wang, Ran Zhang, Min-Ling Feng, Yanghe Qu, Chongxiao The Chien-Shiung Wu College Southeast University Nanjing210096 China The MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai200240 China The School of Computer Science and Engineering Southeast University Nanjing210096 China Ministry of Education China School of Computing & Information Sciences Caritas Institute of Higher Education Hong Kong The Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education China The School of Mathematical Science Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China The College of Systems Engineering National University of Defense Technology China The 52nd Research Institute of China Electronics Technology Group China
Exploiting label correlations is important to multi-label classification. Previous methods capture the high-order label correlations mainly by transforming the label matrix to a latent label space with low-rank matrix... 详细信息
来源: 评论
Feature relevance determination for ordinal regression in the context of feature redundancies and privileged information
arXiv
收藏 引用
arXiv 2019年
作者: Pfannschmidta, Lukas Jakob, Jonathan Hinder, Fabian Biehl, Michael Tino, Peter Hammer, Barbara Machine Learning Group Bielefeld University DE Germany Intelligent Systems Group University of Groningen NL Computer Science University of Birmingham United Kingdom
Advances in machine learning technologies have led to increasingly powerful models in particular in the context of big data. Yet, many application scenarios demand for robustly interpretable models rather than optimum... 详细信息
来源: 评论
Fuel consumption analysis of driven trips with respect to route choice
Fuel consumption analysis of driven trips with respect to ro...
收藏 引用
International Conference on Data Engineering Workshops
作者: Ekaterina Gilman Satu Tamminen Anja Keskinarkaus Theodoros Anagnostopoulos Xiang Su Susanna Pirttikangas Jukka Riekki Center for Ubiquitous Computing University of Oulu Finland Biomimetics and Intelligent Systems Group University of Oulu Finland Center for Machine Vision and Signal Analysis University of Oulu Finland Department of Infocommunication Technologies ITMO University Saint Petersburg Russia Department of Computer Science University of Helsinki Finland
Advances in technology equip traffic domain with instruments to gather and analyse data for safe and fuel-efficient traveling. In this article, we elaborate on the effects that taxi drivers' route selection has on... 详细信息
来源: 评论
Confidence intervals uncovered: Are we ready for real-world medical imaging AI?
arXiv
收藏 引用
arXiv 2024年
作者: Christodoulou, Evangelia Reinke, Annika Houhou, Rola Kalinowski, Piotr Erkan, Selen Sudre, Carole H. Burgos, Ninon Boutaj, Sofiène Loizillon, Sophie Solal, Maëlys Rieke, Nicola Cheplygina, Veronika Antonelli, Michela Mayer, Leon D. Tizabi, Minu D. Jorge Cardoso, M. Simpson, Amber Jäger, Paul F. Kopp-Schneider, Annette Varoquaux, Gaël Colliot, Olivier Maier-Hein, Lena Heidelberg Div. Intelligent Medical Systems Germany AI Health Innovation Cluster Germany NCT Heidelberg a partnership between DKFZ Heidelberg University Hospital Germany DKFZ Heidelberg Helmholtz Imaging Germany HIDSS4Health - Helmholtz Information and Data Science School for Health Germany DKFZ Heidelberg Interactive Machine Learning Group Germany MRC Unit for Lifelong Health and Ageing UCL Centre for Medical Image Computing Department of Computer Science University College London United Kingdom School of Biomedical Engineering and Imaging Science King’s College London United Kingdom Sorbonne Université Institut du Cerveau - Paris Brain Institute - ICM CNRS Inria Inserm AP-HP Hôpital de la Pitié-Salpêtrière France NVIDIA Germany Department of Computer Science IT University of Copenhagen Denmark Centre for Medical Image Computing University College London United Kingdom School of Computing Queen’s University Canada Department of Biomedical and Molecular Sciences Queen’s University Canada Division of Biostatistics DKFZ Germany Parietal project team INRIA Saclay-Île de France France Faculty of Mathematics and Computer Science Heidelberg University Germany Medical Faculty Heidelberg University Germany
Medical imaging is spearheading the AI transformation of healthcare. Performance reporting is key to determine which methods should be translated into clinical practice. Frequently, broad conclusions are simply derive... 详细信息
来源: 评论
Continuous-time deep glioma growth models
arXiv
收藏 引用
arXiv 2021年
作者: Petersen, Jens Isensee, Fabian Köhler, Gregor Jäger, Paul F. Zimmerer, David Neuberger, Ulf Wick, Wolfgang Debus, Jürgen Heiland, Sabine Bendszus, Martin Vollmuth, Philipp Maier-Hein, Klaus H. Division of Medical Image Computing German Cancer Research Center Heidelberg Germany HIP Applied Computer Vision Lab Division of Medical Image Computing German Cancer Research Center Germany Interactive Machine Learning Group German Cancer Research Center Germany Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany Neurology Clinic Heidelberg University Hospital Germany DKTK CCU Neurooncology German Cancer Research Center Germany Heidelberg Germany Heidelberg University Hospital Germany Clinical Cooperation Unit Radiation Oncology German Cancer Research Center Germany
The ability to estimate how a tumor might evolve in the future could have tremendous clinical benefits, from improved treatment decisions to better dose distribution in radiation therapy. Recent work has approached th... 详细信息
来源: 评论
Towards robust partially supervised multi-structure medical image segmentation on small-scale data
arXiv
收藏 引用
arXiv 2020年
作者: Dong, Nanqing Kampffmeyer, Michael Liang, Xiaodan Xu, Min Voiculescu, Irina Xing, Eric Department of Computer Science University of Oxford Oxford United Kingdom Machine Learning Group UiT The Arctic University of Norway Tromsø Norway School of Intelligent Systems Engineering Sun Yat-Sen University Guangdong Guangzhou China Computational Biology Department Carnegie Mellon University PittsburghPA United States Machine Learning Department Carnegie Mellon University PittsburghPA United States Mohamed bin Zayed University of Artificial Intelligence Masdar City Abu Dhabi United Arab Emirates
The data-driven nature of deep learning (DL) models for semantic segmentation requires a large number of pixel-level annotations. However, large-scale and fully labeled medical datasets are often unavailable for pract... 详细信息
来源: 评论
Meta-transfer learning through hard tasks
arXiv
收藏 引用
arXiv 2019年
作者: Sun, Qianru Liu, Yaoyao Chen, Zhaozheng Chua, Tat-Seng Schiele, Bernt School of Information Systems Singapore Management University School of Electrical and Information Engineering Tianjin University School of Computing National University of Singapore Department of Computer Vision and Machine Learning Max-Plank Institute for Informatics
Meta-learning has been proposed as a framework to address the challenging few-shot learning setting. The key idea is to leverage a large number of similar few-shot tasks in order to learn how to adapt a base-learner t... 详细信息
来源: 评论