咨询与建议

限定检索结果

文献类型

  • 106 篇 期刊文献
  • 70 篇 会议
  • 1 册 图书

馆藏范围

  • 177 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 118 篇 工学
    • 82 篇 计算机科学与技术...
    • 75 篇 软件工程
    • 32 篇 生物工程
    • 22 篇 信息与通信工程
    • 21 篇 生物医学工程(可授...
    • 20 篇 光学工程
    • 16 篇 控制科学与工程
    • 13 篇 化学工程与技术
    • 10 篇 电气工程
    • 7 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 交通运输工程
    • 4 篇 环境科学与工程(可...
    • 3 篇 材料科学与工程(可...
    • 3 篇 电子科学与技术(可...
    • 3 篇 土木工程
    • 3 篇 航空宇航科学与技...
  • 76 篇 理学
    • 33 篇 生物学
    • 28 篇 数学
    • 18 篇 物理学
    • 13 篇 化学
    • 13 篇 统计学(可授理学、...
  • 29 篇 管理学
    • 17 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 12 篇 医学
    • 11 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 农学
  • 2 篇 教育学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 12 篇 machine learning
  • 9 篇 deep learning
  • 6 篇 computer vision
  • 5 篇 image segmentati...
  • 5 篇 semantics
  • 5 篇 training
  • 4 篇 object detection
  • 4 篇 machine vision
  • 4 篇 robot sensing sy...
  • 3 篇 three-dimensiona...
  • 3 篇 anomaly detectio...
  • 3 篇 data mining
  • 3 篇 human robot inte...
  • 3 篇 benchmarking
  • 3 篇 laser radar
  • 3 篇 tumors
  • 3 篇 accuracy
  • 3 篇 data models
  • 3 篇 robustness
  • 2 篇 neurons

机构

  • 5 篇 heidelberg
  • 4 篇 centre for medic...
  • 4 篇 munich center fo...
  • 4 篇 division of medi...
  • 3 篇 christian dopple...
  • 3 篇 computer science...
  • 3 篇 department of in...
  • 3 篇 paderborn univer...
  • 3 篇 heidelberg divis...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 department of ra...
  • 3 篇 lausanne
  • 3 篇 ihu strasbourg s...
  • 3 篇 computer vision ...
  • 3 篇 centre for biome...
  • 3 篇 department of pa...
  • 3 篇 valeo vision sys...
  • 3 篇 interactive mach...
  • 3 篇 faculty of mathe...

作者

  • 11 篇 behnke sven
  • 6 篇 sven behnke
  • 6 篇 jäger paul f.
  • 5 篇 reid ian
  • 5 篇 isensee fabian
  • 5 篇 cremers daniel
  • 4 篇 bakas spyridon
  • 4 篇 memmesheimer rap...
  • 4 篇 zimmerer david
  • 4 篇 petersen jens
  • 4 篇 maier-hein klaus...
  • 3 篇 ming dong
  • 3 篇 van gool luc
  • 3 篇 galdran adrian
  • 3 篇 hüllermeier eyke
  • 3 篇 manjeet rege
  • 3 篇 hammer barbara
  • 3 篇 reinke annika
  • 3 篇 glocker ben
  • 3 篇 van ginneken bra...

语言

  • 167 篇 英文
  • 10 篇 其他
检索条件"机构=Computer Vision and Machine Learning Systems Group"
177 条 记 录,以下是41-50 订阅
排序:
learning-based Relational Object Matching Across Views
arXiv
收藏 引用
arXiv 2023年
作者: Elich, Cathrin Armeni, Iro Oswald, Martin R. Pollefeys, Marc Stueckler, Joerg Embodied Vision Group Max Planck Institute for Intelligent Systems Tuebingen Germany The Max Planck ETH Center for Learning Systems The Computer Vision and Geometry Lab ETH Zurich Switzerland University of Amsterdam Netherlands Microsoft Mixed Reality and AI Lab Zurich Switzerland
Intelligent robots require object-level scene understanding to reason about possible tasks and interactions with the environment. Moreover, many perception tasks such as scene reconstruction, image retrieval, or place... 详细信息
来源: 评论
Sit Back and Relax: learning to Drive Incrementally in All Weather Conditions
arXiv
收藏 引用
arXiv 2023年
作者: Leitner, Stefan Mirza, M. Jehanzeb Lin, Wei Micorek, Jakub Masana, Marc Kozinski, Mateusz Possegger, Horst Bischof, Horst Institute for Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Embedded Machine Learning Austria Christian Doppler Laboratory for Semantic 3D Computer Vision Austria TU Graz SAL Dependable Embedded Systems Lab Silicon Austria Labs Austria
In autonomous driving scenarios, current object detection models show strong performance when tested in clear weather. However, their performance deteriorates significantly when tested in degrading weather conditions.... 详细信息
来源: 评论
ActMAD: Activation Matching to Align Distributions for Test-Time-Training
arXiv
收藏 引用
arXiv 2022年
作者: Mirza, Muhammad Jehanzeb Soneira, Pol Jané Lin, Wei Kozinski, Mateusz Possegger, Horst Bischof, Horst Institute for Computer Graphics and Vision TU Graz Austria Christian Doppler Laboratory for Embedded Machine Learning Institute of Control Systems KIT Germany Christian Doppler Laboratory for Semantic 3D Computer Vision
Test-Time-Training (TTT) is an approach to cope with out-of-distribution (OOD) data by adapting a trained model to distribution shifts occurring at test-time. We propose to perform this adaptation via Activation Match... 详细信息
来源: 评论
The Conditional Cauchy-Schwarz Divergence With Applications to Time-Series Data and Sequential Decision Making
收藏 引用
IEEE Transactions on Pattern Analysis and machine Intelligence 2025年 第7期47卷 5901-5917页
作者: Shujian Yu Hongming Li Sigurd Løkse Robert Jenssen José C. Príncipe Machine Learning Group UiT - The Arctic University of Norway Tromsø Norway Quantitative Data Analytics Group Vrije Universiteit Amsterdam Amsterdam The Netherlands Department of Electrical and Computer Engineering University of Florida Gainesville FL USA Drones and Autonomous Systems Group NORCE Norwegian Research Centre Tromsø Norway Pioneer AI Centre Copenhagen University København Denmark Norwegian Computing Center Oslo Norway
The Cauchy-Schwarz (CS) divergence was developed by Príncipe et al. in 2000. In this paper, we extend the classic CS divergence to quantify the closeness between two conditional distributions and show that the de... 详细信息
来源: 评论
RecycleNet: Latent Feature Recycling Leads to Iterative Decision Refinement
RecycleNet: Latent Feature Recycling Leads to Iterative Deci...
收藏 引用
IEEE Workshop on Applications of computer vision (WACV)
作者: Gregor Koehler Tassilo Wald Constantin Ulrich David Zimmerer Paul F. Jaeger Jörg K. H. Franke Simon Kohl Fabian Isensee Klaus H. Maier-Hein Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Information and Data Science School for Health Karlsruhe/Heidelberg Germany Helmholtz Imaging DKFZ National Center for Tumor Diseases (NCT) NCT Heidelberg a Partnership Between DKFZ University Medical Center Heidelberg Interactive Machine Learning Group DKFZ Machine Learning Lab University of Freiburg Freiburg Germany Latent Labs (***) London UK Applied Computer Vision Lab DKFZ Pattern Analysis and Learning Group Heidelberg University Hospital Heidelberg Germany
Despite the remarkable success of deep learning systems over the last decade, a key difference still remains between neural network and human decision-making: As humans, we can not only form a decision on the spot, bu...
来源: 评论
RecycleNet: Latent Feature Recycling Leads to Iterative Decision Refinement
arXiv
收藏 引用
arXiv 2023年
作者: Koehler, Gregor Wald, Tassilo Ulrich, Constantin Zimmerer, David Jaeger, Paul F. Franke, Jörg K.H. Kohl, Simon Isensee, Fabian Maier-Hein, Klaus H. Heidelberg Division of Medical Image Computing Germany Helmholtz Information and Data Science School for Health Karlsruhe Heidelberg Germany Helmholtz Imaging DKFZ Germany NCT Heidelberg a partnership between DKFZ University Medical Center Heidelberg Germany Interactive Machine Learning Group DKFZ Applied Computer Vision Lab DKFZ Machine Learning Lab University of Freiburg Freiburg Germany London United Kingdom Pattern Analysis and Learning Group Heidelberg University Hospital Heidelberg Germany
Despite the remarkable success of deep learning systems over the last decade, a key difference still remains between neural network and human decision-making: As humans, we can not only form a decision on the spot, bu... 详细信息
来源: 评论
VICE: variational interpretable concept embeddings  22
VICE: variational interpretable concept embeddings
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing systems
作者: Lukas Muttenthaler Charles Y. Zheng Patrick McClure Robert A. Vandermeulen Martin N. Hebart Francisco Pereira Machine Learning Group Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data (BIFOLD) Berlin Germany Machine Learning Team FMRI Facility National Institute of Mental Health Bethesda MD Department of Computer Science Naval Postgraduate School Monterey CA Vision and Computational Cognition Group MPI for Human Cognitive and Brain Sciences Leipzig Germany
A central goal in the cognitive sciences is the development of numerical models for mental representations of object concepts. This paper introduces Variational Interpretable Concept Embeddings (VICE), an approximate ...
来源: 评论
Reproducibility and Geometric Intrinsic Dimensionality: An Investigation on Graph Neural Network Research
arXiv
收藏 引用
arXiv 2024年
作者: Hille, Tobias Stubbemann, Maximilian Hanika, Tom Knowledge & Data Engineering Group University of Kassel Kassel Germany Interdisciplinary Research Center for Information System Design University of Kassel Kassel Germany Information Systems and Machine Learning Lab University of Hildesheim Hildesheim Germany Institute of Computer Science University of Hildesheim Hildesheim Germany
Difficulties in replication and reproducibility of empirical evidences in machine learning research have become a prominent topic in recent years. Ensuring that machine learning research results are sound and reliable... 详细信息
来源: 评论
Pattern Discovery in an EEG Database of Depression Patients: Preliminary Results
Pattern Discovery in an EEG Database of Depression Patients:...
收藏 引用
International Conference on Measurement
作者: Kateřina Hlaváčková-Schindler Christina Pacher Claudia Plant Mykola Lazarenko Milan Paluš Jaroslav Hlinka Aditi Kathpalia Martin Brunovský Data Mining and Machine Learning Research Group Faculty of Computer Science University of Vienna Vienna Austria Department of Complex Systems Institute of Computer Science Czech Academy of Sciences Prague Czechia Clinical Research Programme National Institute of Mental Health Klecany Czechia
The ability to predict response to medication treatment of depressed patients, either early in the course of therapy or before treatment even begins can avoid trials of ineffective therapy and save patients from prolo...
来源: 评论
Semi-supervised Classification of Malware Families Under Extreme Class Imbalance via Hierarchical Non-Negative Matrix Factorization with Automatic Model Selection
arXiv
收藏 引用
arXiv 2023年
作者: Eren, Maksim E. Bhattarai, Manish Joyce, Robert J. Raff, Edward Nicholas, Charles Alexandrov, Boian S. Advanced Research in Cyber Systems LANL United States Theoretical Division LANL United States Machine Learning Research Group Booz Allen Hamilton United States Department of Computer Science and Electrical Engineering UMBC United States
Identification of the family to which a malware specimen belongs is essential in understanding the behavior of the malware and developing mitigation strategies. Solutions proposed by prior work, however, are often not... 详细信息
来源: 评论