咨询与建议

限定检索结果

文献类型

  • 106 篇 期刊文献
  • 70 篇 会议
  • 1 册 图书

馆藏范围

  • 177 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 118 篇 工学
    • 82 篇 计算机科学与技术...
    • 75 篇 软件工程
    • 32 篇 生物工程
    • 22 篇 信息与通信工程
    • 21 篇 生物医学工程(可授...
    • 20 篇 光学工程
    • 16 篇 控制科学与工程
    • 13 篇 化学工程与技术
    • 10 篇 电气工程
    • 7 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 交通运输工程
    • 4 篇 环境科学与工程(可...
    • 3 篇 材料科学与工程(可...
    • 3 篇 电子科学与技术(可...
    • 3 篇 土木工程
    • 3 篇 航空宇航科学与技...
  • 76 篇 理学
    • 33 篇 生物学
    • 28 篇 数学
    • 18 篇 物理学
    • 13 篇 化学
    • 13 篇 统计学(可授理学、...
  • 29 篇 管理学
    • 17 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 12 篇 医学
    • 11 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 农学
  • 2 篇 教育学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 12 篇 machine learning
  • 9 篇 deep learning
  • 6 篇 computer vision
  • 5 篇 image segmentati...
  • 5 篇 semantics
  • 5 篇 training
  • 4 篇 object detection
  • 4 篇 machine vision
  • 4 篇 robot sensing sy...
  • 3 篇 three-dimensiona...
  • 3 篇 anomaly detectio...
  • 3 篇 data mining
  • 3 篇 human robot inte...
  • 3 篇 benchmarking
  • 3 篇 laser radar
  • 3 篇 tumors
  • 3 篇 accuracy
  • 3 篇 data models
  • 3 篇 robustness
  • 2 篇 neurons

机构

  • 5 篇 heidelberg
  • 4 篇 centre for medic...
  • 4 篇 munich center fo...
  • 4 篇 division of medi...
  • 3 篇 christian dopple...
  • 3 篇 computer science...
  • 3 篇 department of in...
  • 3 篇 paderborn univer...
  • 3 篇 heidelberg divis...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 department of ra...
  • 3 篇 lausanne
  • 3 篇 ihu strasbourg s...
  • 3 篇 computer vision ...
  • 3 篇 centre for biome...
  • 3 篇 department of pa...
  • 3 篇 valeo vision sys...
  • 3 篇 interactive mach...
  • 3 篇 faculty of mathe...

作者

  • 11 篇 behnke sven
  • 6 篇 sven behnke
  • 6 篇 jäger paul f.
  • 5 篇 reid ian
  • 5 篇 isensee fabian
  • 5 篇 cremers daniel
  • 4 篇 bakas spyridon
  • 4 篇 memmesheimer rap...
  • 4 篇 zimmerer david
  • 4 篇 petersen jens
  • 4 篇 maier-hein klaus...
  • 3 篇 ming dong
  • 3 篇 van gool luc
  • 3 篇 galdran adrian
  • 3 篇 hüllermeier eyke
  • 3 篇 manjeet rege
  • 3 篇 hammer barbara
  • 3 篇 reinke annika
  • 3 篇 glocker ben
  • 3 篇 van ginneken bra...

语言

  • 167 篇 英文
  • 10 篇 其他
检索条件"机构=Computer Vision and Machine Learning Systems Group"
177 条 记 录,以下是81-90 订阅
排序:
Methodology for creation of labeled image datasets of entrained air voids and aggregates in concrete surfaces using confocal laser scanning microscopy
收藏 引用
Advanced Engineering Informatics 2025年 67卷
作者: Viktor Kostic Qadeer Khan Daniel Cremers Jithender Timothy Thomas Kränkel Christoph Gehlen TUM School of Engineering and Design Department of Materials Engineering Chair of Materials Science and Testing Centre for Building Materials (cbm) Technical University of Munich Munich 81245 BY Germany TUM School of Computation Information and Technology Computer Vision Group Technical University of Munich Munich 81245 BY Germany Munich Center for Machine Learning Munich 81245 BY Germany
Several strategies using neural network algorithms have been established to automate the process of evaluating parameters regarding the freeze–thaw resistance of hardened concrete from image data. However, the perfor... 详细信息
来源: 评论
Spectroscopic detection of pigments in tissues: correlation with tissue aging and cancer development
Spectroscopic detection of pigments in tissues: correlation ...
收藏 引用
2022 International Conference Laser Optics, ICLO 2022
作者: Oliveira, L.M. Goncalves, T.M. Botelho, A.R. Martins, I.S. Silva, H.F. Carneiro, I. Carvalho, S. Henrique, R. Tuchin, V.V. Porto Portugal Center of Innovation in Engineering and Industrial Technology Isep Porto Portugal Department of Electrical and Computer Engineering Porto University-School of Engineering Porto Portugal Department of Pathology and Cancer Biology and Epigenetics Group Portuguese Oncology Institute of Porto Porto Portugal Porto Portugal Viana do Castelo Portugal Dept. of Pathol. and Molecular Immunology Porto University-Institute of Biomedical Sciences Abel Salazar Porto Portugal Science Medical Center Saratov State University Saratov Russia Laboratory of Laser Molecular Imaging and Machine Learning National Research Tomsk State University Tomsk Russia Laboratory of Laser Diagnostics of Technical and Living Systems Institute of Precision Mechanics and Control Frc-Saratov Scientific Centre-of the Russian Academy of Sciences Saratov Russia
The direct calculation of the absorption coefficient spectra of various tissues from spectral measurements allowed to retrieve the contents of melanin and lipofuscin. In the rabbit brain cortex, 1.8 times higher melan... 详细信息
来源: 评论
Efficient Deep Models for Real-Time 4K Image Super-Resolution. NTIRE 2023 Benchmark and Report
Efficient Deep Models for Real-Time 4K Image Super-Resolutio...
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern Recognition Workshops, CVPRW 2023
作者: Conde, Marcos V. Zamfir, Eduard Timofte, Radu Motilla, Daniel Liu, Cen Zhang, Zexin Peng, Yunbo Lin, Yue Guo, Jiaming Zou, Xueyi Chen, Yuyi Liu, Yi Hao, Jia Yan, Youliang Zhang, Yuanfan Li, Gen Sun, Lei Kong, Lingshun Bai, Haoran Pan, Jinshan Dong, Jiangxin Tang, Jinhui Ayazoglu, Mustafa Bilecen, Bahri Batuhan Li, Mingxi Zhang, Yuhang Fan, Xianjun Sheng, Yankai Sun, Long Liu, Zibin Gou, Weiran Li, Shaoqing Yi, Ziyao Xiang, Yan Kong, Dehui Xu, Ke Gankhuyag, Ganzorig Yoon, Kihwan Zhang, Jin Yu, Gaocheng Zhang, Feng Wang, Hongbin Zhou, Zhou Chao, Jiahao Gao, Hongfan Gong, Jiali Yang, Zhengfeng Zeng, Zhenbing Chen, Chengpeng Guo, Zichao Park, Anjin Liu, Yuqing Jia, Qi Yu, Hongyuan Yin, Xuanwu Zuo, Kunlong Zhang, Dongyang Fu, Ting Cheng, Zhengxue Zhu, Shiai Zhou, Dajiang Yu, Weichen Ge, Lin Dong, Jiahua Zou, Yajun Wu, Zhuoyuan Han, Binnan Zhang, Xiaolin Zhang, Heng Shao, Ben Zheng, Shaolong Yin, Daheng Chen, Baijun Liu, Mengyang Nistor, Marian-Sergiu Chen, Yi-Chung Huang, Zhi-Kai Chiang, Yuan-Chun Chen, Wei-Ting Yang, Hao-Hsiang Chang, Hua-En Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Vo, Tu Yan, Qingsen Zhu, Yun Su, Jinqiu Zhang, Yanning Zhang, Cheng Luo, Jiaying Cho, Youngsun Lee, Nakyung Computer Vision Lab CAIDAS IFI University of Würzburg Germany Sony Interactive Entertainment CA United States Huawei Technologies Co. Ltd. China NetEase Games AI Lab Nanjing University of Science and Technology China Tencent China Attrsense Korea Republic of Sanechips Co Ltd Ant Group China East China Normal University China Shopee Dalian University of Technology Xiaomi Inc. China China Zhejiang Dahua Technology Co. Ltd. China Multimedia Department Xiaomi Inc. China Korea Photonic Technology Institute Korea Republic of School of Computer Science and Engineering Southeast University China University Al. I. Cuza Iasi Romania Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Northwestern Polytechnical University China KC Machine Learning Lab CJ OliveNetworks AI Research
This paper introduces a novel benchmark for efficient up-scaling as part of the NTIRE 2023 Real-Time Image Super-Resolution (RTSR) Challenge, which aimed to upscale images from 720p and 1080p resolution to native 4K (... 详细信息
来源: 评论
ScanMix: learning from Severe Label Noise via Semantic Clustering and Semi-Supervised learning
arXiv
收藏 引用
arXiv 2021年
作者: Sachdeva, Ragav Cordeiro, Filipe Rolim Belagiannis, Vasileios Reid, Ian Carneiro, Gustavo Visual Geometry Group Department of Engineering Science University of Oxford United Kingdom School of Computer Science Australian Institute for Machine Learning Australia Visual Computing Lab Department of Computing Universidade Federal Rural de Pernambuco Brazil Otto-von-Guericke-Universität Magdeburg Germany Centre for Vision Speech and Signal Processing University of Surrey United Kingdom
We propose a new training algorithm, ScanMix, that explores semantic clustering and semi-supervised learning (SSL) to allow superior robustness to severe label noise and competitive robustness to non-severe label nois... 详细信息
来源: 评论
LongReMix: Robust learning with High Confidence Samples in a Noisy Label Environment
arXiv
收藏 引用
arXiv 2021年
作者: Cordeiro, Filipe R. Sachdeva, Ragav Belagiannis, Vasileios Reid, Ian Carneiro, Gustavo School of Computer Science Australian Institute for Machine Learning Australia Visual Geometry Group Department of Engineering Science University of Oxford United Kingdom Visual Computing Lab Department of Computing Universidade Federal Rural de Pernambuco Brazil Otto-von-Guericke-Universität Magdeburg Germany Centre for Vision Speech and Signal Processing University of Surrey United Kingdom
State-of-the-art noisy-label learning algorithms rely on an unsupervised learning to classify training samples as clean or noisy, followed by a semi-supervised learning (SSL) that minimises the empirical vicinal risk ... 详细信息
来源: 评论
A Q-learning-based smart clustering routing method in flying Ad Hoc networks
收藏 引用
Journal of King Saud University - computer and Information Sciences 2024年 第1期36卷
作者: Hosseinzadeh, Mehdi Tanveer, Jawad Rahmani, Amir Masoud Aurangzeb, Khursheed Yousefpoor, Efat Yousefpoor, Mohammad Sadegh Darwesh, Aso Lee, Sang-Woong Fazlali, Mahmood Institute of Research and Development Duy Tan University Da Nang Viet Nam School of Medicine and Pharmacy Duy Tan University Da Nang Viet Nam Department of Computer Science and Engineering Sejong University Seoul 05006 South Korea Future Technology Research Center National Yunlin University of Science and Technology Yunlin Taiwan Department of Computer Engineering College of Computer and Information Sciences King Saud University P.O. Box 51178 Riyadh 11543 Saudi Arabia Department of Computer Engineering Dezful Branch Islamic Azad University Dezful Iran Department of Information Technology University of Human Development Sulaymaniyah Iraq Pattern Recognition and Machine Learning Lab Gachon University 1342 Seongnamdaero Sujeonggu Seongnam 13120 South Korea Cybersecurity and Computing Systems Research Group School of Physics Engineering and Computer Science University of Hertfordshire Hertfordshire AL10 9AB United Kingdom
Flying ad hoc networks (FANETs) have particular importance in various military and civilian applications due to their specific features, including frequent topological changes, the movement of drones in a three-dimens... 详细信息
来源: 评论
Awareness in robotics: An early perspective from the viewpoint of the EIC Pathfinder Challenge "Awareness Inside"
arXiv
收藏 引用
arXiv 2024年
作者: Santina, Cosimo Della Corbato, Carlos Hernandez Sisman, Burak Leiva, Luis A. Arapakis, Ioannis Vakalellis, Michalis Vanderdonckt, Jean D’Haro, LuisFernando Manzi, Guido Becchio, Cristina Elamrani, Aïda Alirezaei, Mohsen Castellano, Ginevra Dimarogonas, Dimos V. Ghosh, Arabinda Haesaert, Sofie Soudjani, Sadegh Stroeve, Sybert Verschure, Paul Bacciu, Davide Deroy, Ophelia Bahrami, Bahador Gallicchio, Claudio Hauert, Sabine Sanz, Ricardo Lanillos, Pablo Iacca, Giovanni Sigg, Stephan Gasulla, Manel Steels, Luc Sierra, Carles Department of Cognitive Robotics Delft University of Technology Delft Netherlands Oberpfaffenhofen Germany Department of Computer Science University of Luxembourg Luxembourg 4 Telefónica I+D Spain AEGIS IT Research GmbH Germany Université catholique de Louvain Belgium Speech Technology and Machine Learning Group ETSI de Telecomunicación Universidad Politécnica de Madrid Madrid Spain Alien Venture Studio Alien Technology Transfer Rome Italy Hamburg Germany Institut Jean Nicod École Normale Supérieure Paris France Research Technology and Development Department Digital Industry Software Helmond Netherlands Department of Information Technology Uppsala University Uppsala Sweden Division of Decision and Control Systems School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm Sweden Max Planck Institute for Software Systems Kaiserslautern Germany Department of Electrical Engineering Control Systems Group Eindhoven University of Technology Eindhoven Netherlands Amsterdam Netherlands Donders Centre for Neuroscience Radboud University Nijmegen Netherlands Computer Science Department University of Pisa Pisa Italy Faculty of Philosophy Philosophy of Science The Study of Religion Ludwig Maximilian University of Munich Munich Germany School of Engineering Mathematics and Technology University of Bristol Bristol United Kingdom Autonomous Systems Laboratory Universidad Politécnica de Madrid Spain Madrid Spain Department of Information Engineering and Computer Science University of Trento Trento Italy Department of Information and Communications Engineering Aalto University Espoo Finland Department of Electronic Engineering Universitat Politècnica de Catalunya Barcelona Spain Studio Stelluti Brussels Belgium Barcelona Spain
Consciousness has been historically a heavily debated topic in engineering, science, and philosophy. On the contrary, awareness had less success in raising the interest of scholars in the past. However, things are cha... 详细信息
来源: 评论
sbi reloaded: a toolkit for simulation-based inference workflows
arXiv
收藏 引用
arXiv 2024年
作者: Boelts, Jan Deistler, Michael Gloeckler, Manuel Tejero-Cantero, Álvaro Lueckmann, Jan-Matthis Moss, Guy Steinbach, Peter Moreau, Thomas Muratore, Fabio Linhart, Julia Durkan, Conor Vetter, Julius Miller, Benjamin Kurt Herold, Maternus Ziaeemehr, Abolfazl Pals, Matthijs Gruner, Theo Bischoff, Sebastian Krouglova, Anastasia N. Gao, Richard Lappalainen, Janne K. Mucsányi, Bálint Pei, Felix Schulz, Auguste Stefanidi, Zinovia Rodrigues, Pedro L.C. Schröder, Cornelius Zaid, Faried Abu Beck, Jonas Kapoor, Jaivardhan Greenberg, David S. Gonçalves, Pedro J. Macke, Jakob H. Machine Learning in Science University of Tübingen Germany Tübingen AI Center Germany TransferLab AppliedAI Institute for Europe Germany ML Colab Cluster ML in Science University of Tübingen Germany Google Research United States Helmholtz-Zentrum Dresden-Rossendorf Germany Université Paris-Saclay INRIA CEA Palaiseau France Robert Bosch GmbH Germany School of Informatics University of Edinburgh United Kingdom University of Amsterdam Netherlands Research and Innovation Center BMW Group Germany Institute for Applied Mathematics and Scientific Computing University of the Bundeswehr Munich Germany Aix Marseille INSERM INS France TU Darmstadt Hessian.AI Germany University Hospital Tübingen M3 Research Center Germany Faculty of Science KU Leuven B-3000 Belgium Imec Belgium Methods of Machine Learning University of Tübingen Germany Neuroscience Institute Carnegie Mellon University United States Université Grenoble Alpes INRIA CNRS Grenoble INP LJK France Hertie Institute for AI in Brain Health University of Tübingen Germany Institute of Coastal Systems - Analysis and Modeling Helmholtz AI Germany Departments of Computer Science Electrical Engineering KU Leuven Belgium Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Scientists and engineers use simulators to model empirically observed phenomena. However, tuning the parameters of a simulator to ensure its outputs match observed data presents a significant challenge. Simulation-bas... 详细信息
来源: 评论
learning with group Noise
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Qizhou Yao, Jiangchao Gong, Chen Liu, Tongliang Gong, Mingming Yang, Hongxia Han, Bo Department of Computer Science Hong Kong Baptist University Hong Kong Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of MoE School of Computer Science and Engineering Nanjing University of Science and Technology China Data Analytics and Intelligence Lab Alibaba Group China Department of Computing Hong Kong Polytechnic University Hong Kong Trustworthy Machine Learning Lab School of Computer Science University of Sydney Australia School of Mathematics and Statistics University of Melbourne Australia
machine learning in the context of noise is a challenging but practical setting to plenty of real-world applications. Most of the previous approaches in this area focus on the pairwise relation (casual or correlationa... 详细信息
来源: 评论
RayNet: learning volumetric 3d reconstruction with ray potentials
arXiv
收藏 引用
arXiv 2019年
作者: Paschalidou, Despoina Ulusoy, Ali Osman Schmitt, Carolin Van Gool, Luc Geiger, Andreas Autonomous Vision Group MPI for Intelligent Systems Tübingen Microsoft Computer Vision Lab ETH Zürich KU Leuven Computer Vision and Geometry Group ETH Zürich Max Planck ETH Center for Learning Systems
In this paper, we consider the problem of reconstructing a dense 3D model using images captured from different views. Recent methods based on convolutional neural networks (CNN) allow learning the entire task from dat... 详细信息
来源: 评论