咨询与建议

限定检索结果

文献类型

  • 15 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 24 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 18 篇 工学
    • 12 篇 计算机科学与技术...
    • 12 篇 软件工程
    • 6 篇 光学工程
    • 6 篇 信息与通信工程
    • 3 篇 生物工程
    • 2 篇 电气工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 控制科学与工程
    • 1 篇 石油与天然气工程
  • 9 篇 理学
    • 4 篇 物理学
    • 3 篇 数学
    • 3 篇 生物学
    • 1 篇 统计学(可授理学、...
  • 2 篇 医学
    • 2 篇 临床医学
    • 1 篇 特种医学
  • 1 篇 管理学
    • 1 篇 图书情报与档案管...

主题

  • 2 篇 image enhancemen...
  • 2 篇 image segmentati...
  • 2 篇 multimedia commu...
  • 2 篇 visualization
  • 2 篇 feature extracti...
  • 2 篇 optical resolvin...
  • 2 篇 computer vision
  • 1 篇 support vector m...
  • 1 篇 semantic segment...
  • 1 篇 uncertainty guid...
  • 1 篇 uncertainty self...
  • 1 篇 deep neural netw...
  • 1 篇 human computer i...
  • 1 篇 proposals
  • 1 篇 visual captionin...
  • 1 篇 signal processin...
  • 1 篇 trusted margin l...
  • 1 篇 question answeri...
  • 1 篇 image edge detec...
  • 1 篇 self-supervised ...

机构

  • 4 篇 university of sc...
  • 4 篇 computer vision ...
  • 3 篇 harbin institute...
  • 3 篇 peking universit...
  • 2 篇 inaoe puebla
  • 2 篇 department of co...
  • 2 篇 digital research...
  • 2 篇 university of ud...
  • 2 篇 dalian universit...
  • 2 篇 multimedia infor...
  • 2 篇 nlpr institute o...
  • 2 篇 indian institute...
  • 2 篇 hefei university...
  • 2 篇 dept. mathematic...
  • 2 篇 tianjin universi...
  • 2 篇 computer vision ...
  • 2 篇 microsoft resear...
  • 2 篇 simula research ...
  • 2 篇 university of ap...
  • 2 篇 université paris...

作者

  • 5 篇 timofte radu
  • 3 篇 liu yang
  • 2 篇 van gool luc
  • 2 篇 liu xin
  • 2 篇 jiang junjun
  • 2 篇 rajagopalan a.n.
  • 2 篇 chen chen
  • 2 篇 zhang zhao
  • 2 篇 jemni sana khame...
  • 2 篇 suin maitreya
  • 2 篇 liu shuai
  • 2 篇 kessentini yousr...
  • 2 篇 liu zhi-song
  • 2 篇 peng long
  • 2 篇 wang li-wen
  • 2 篇 cheddad abbas
  • 2 篇 ammar sourour
  • 2 篇 siu wan-chi
  • 2 篇 purohit kuldeep
  • 2 篇 xu dejia

语言

  • 20 篇 英文
  • 4 篇 其他
检索条件"机构=Computer Vision and Multimedia Technology Laboratory"
24 条 记 录,以下是1-10 订阅
排序:
UCPM: Uncertainty-Guided Cross-Modal Retrieval with Partially Mismatched Pairs
收藏 引用
IEEE Transactions on Image Processing 2025年 34卷 3622-3634页
作者: Zha, Quanxing Liu, Xin Cheung, Yiu-Ming Peng, Shu-Juan Xu, Xing Wang, Nannan Huaqiao University Department of Computer Science Xiamen 361021 China Key Laboratory of Pattern Recognition and Computer Vision Xiamen 361021 China Huaqiao University Fujian Key Laboratory of Big Data Intelligence and Security Xiamen 361021 China Hong Kong Baptist University Department of Computer Science Hong Kong Huaqiao University Department of Artificial Intelligence Xiamen 361021 China Fujian Province University Key Laboratory of Computer Vision and Machine Learning (Huaqiao University) Xiamen 361021 China University of Electronic Science and Technology of China Center for Future Multimedia School of Computer Science and Engineering Chengdu 610051 China Xidian University State Key Laboratory of Integrated Services Networks Xi’an 710071 China
The manual annotation of perfectly aligned labels for cross-modal retrieval (CMR) is incredibly labor-intensive. As an alternative, the collection of co-occurring data pairs from the Internet is a remarkably cost-effe... 详细信息
来源: 评论
Guest Editorial Introduction to the Special Section on Video and Language
收藏 引用
IEEE Transactions on Circuits and Systems for Video technology 2022年 第1期32卷 1-4页
作者: Mei, Tao Corso, Jason J. Kim, Gunhee Luo, Jiebo Shen, Chunhua Zhang, Hanwang Computer Vision and Multimedia Laboratory Jd Explore Academy *** Beijing100101 China Department of Electrical Engineering and Computer Science University of Michigan Ann ArborMI48109 United States Department of Computer Science and Engineering Seoul National University Gwanak-gu Seoul08826 Korea Republic of Department of Computer Science University of Rochester RochesterNY14627 United States College of Computer Science and Technology Zhejiang University Hangzhou310058 China School of Computer Science and Engineering Nanyang Technological University 639798 Singapore
computer vision (CV) and Natural Language Processing (NLP) are two most fundamental disciplines under a broad area of artificial intelligence (AI). CV is regarded as a field of research that explores the techniques to... 详细信息
来源: 评论
Edge Harmony Attention Network for Semi-Supervised Medical Image Segmentation
SSRN
收藏 引用
SSRN 2024年
作者: Lu, Manti Liu, Yang Chen, Yunzhu Yang, Feng School of Computer Electronics and Information Guangxi University Guangxi Nanning530004 China Center for Machine Vision and Signal Analysis University of Oulu OuluFI-90014 Finland Guangxi Key Laboratory of Multimedia Communications Network Technology Guangxi University Guangxi Nanning530004 China
Medical image segmentation is crucial for identifying and measuring lesions and tumors, but acquiring high-quality annotated images is costly and challenging. To address this issue, we propose the Edge Harmony Attenti... 详细信息
来源: 评论
Decouple the High-Frequency and Low-Frequency Information of Images for Semantic Segmentation
Decouple the High-Frequency and Low-Frequency Information of...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Lianlei Shan Xiaobin Li Weiqiang Wang Computer Vision and Multimedia Technology Laboratory University of Chinese Academy of Sciences CAS Beijing China
As a special kind of signal processing technology, image processing has been developed rapidly after the appearance of convolutional neural network (CNN). At present, the semantic segmentation methods are all based on... 详细信息
来源: 评论
Regress Before Construct: Regress Autoencoder for Point Cloud Self-supervised Learning
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Yang Chen, Chen Wang, Can King, Xulin Liu, Mengyuan College of Computer Science Sichuan University China Center for Research in Computer Vision University of Central Florida United States Laboratory on Multimedia Information Processing The Department of Computer Science Kiel University Hangzhou Linxrobot Company China Hangzhou GOTHEN Technology Co. Ltd China Key Laboratory of Machine Perception Shenzhen Graduate School Peking University China
Masked Autoencoders (MAE) have demonstrated promising performance in self-supervised learning for both 2D and 3D computer vision. Nevertheless, existing MAE-based methods still have certain drawbacks. Firstly, the fun... 详细信息
来源: 评论
Joint Design of Radar Receive Filter and Unimodular ISAC Waveform with Sidelobe Level Control
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Kecheng Liu, Ya-Feng Wang, Zhongbin Yuan, Weijie Keskin, Musa Furkan Wymeersch, Henk Xia, Shuqiang School of System Design and Intelligent Manufacturing The Shenzhen Key Laboratory of Robotics and Computer Vision Southern University of Science and Technology Shenzhen518055 China State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China Department of Electrical Engineering Chalmers University of Technology Gothenburg41296 Sweden ZTE Corporation The State Key Laboratory of Mobile Network and Mobile Multimedia Technology Shenzhen518055 China
Integrated sensing and communication (ISAC) has been considered a key feature of next-generation wireless networks. This paper investigates the joint design of the radar receive filter and dual-functional transmit wav... 详细信息
来源: 评论
ST-KeyS: Self-Supervised Transformer for Keyword Spotting in Historical Handwritten Documents
arXiv
收藏 引用
arXiv 2023年
作者: Jemni, Sana Khamekhem Ammar, Sourour Souibgui, Mohamed Ali Kessentini, Yousri Cheddad, Abbas Digital Research Center of Sfax B.P. 275 Sakiet Ezzit Sfax3021 Tunisia Laboratory of Signals systems Artificial Intelligence and networks Sfax Tunisia Multimedia Information systems and Advanced Computing Laboratory Tunisia Computer Vision Center Computer Science Department Universitat Autònoma de Barcelona Spain Department of Computer Science Blekinge Institute of Technology Karlskrona Sweden
Keyword spotting (KWS) in historical documents is an important tool for the initial exploration of digitized collections. Nowadays, the most efficient KWS methods are relying on machine learning techniques that requir... 详细信息
来源: 评论
St-Keys: Self-Supervised Transformer for Keyword Spotting in Historical Handwritten Documents
SSRN
收藏 引用
SSRN 2023年
作者: Jemni, Sana Khamekhem Ammar, Sourour Souibgui, Mohamed Ali Kessentini, Yousri Cheddad, Abbas Digital Research Center of Sfax B.P. 275 Sakiet Ezzit Sfax3021 Tunisia SM@RTS: Laboratory of Signals systeMs aRtificial Intelligence and neTworkS MIR@CL: Multimedia InfoRmation systems and Advanced Computing Laboratory Computer Vision Center Computer Science Department Universitat Aut`onoma de Barcelona Spain Department of Computer Science Blekinge Institute of Technology Karlskrona Sweden
Keyword spotting (KWS) in historical documents is an important tool for the initial exploration of digitized collections. Nowadays, the most efficient KWS methods are relying on machine learning techniques that requir... 详细信息
来源: 评论
Physical Adversarial Attack Meets computer vision: A Decade Survey
arXiv
收藏 引用
arXiv 2022年
作者: Wei, Hui Tang, Hao Jia, Xuemei Wang, Zhixiang Yu, Hanxun Li, Zhubo Satoh, Shin'ichi Van Gool, Luc Wang, Zheng School of Computer Science National Engineering Research Center for Multimedia Software Wuhan University Wuhan China National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University Beijing100871 China Colleage of Software and Technology Zhejiang University Hangzhou China School of Cyber Science and Engineering Wuhan University Wuhan China Digital Content and Media Sciences Research Division National Institute of Informatics Japan Department of Information and Communication Engineering Graduate School of Information Science and Technology The University of Tokyo Japan Computer Vision Lab of ETH Zurich Zürich8092 Switzerland KU Leuven Leuven3000 Belgium INSAIT Sofia Bulgaria
Despite the impressive achievements of Deep Neural Networks (DNNs) in computer vision, their vulnerability to adversarial attacks remains a critical concern. Extensive research has demonstrated that incorporating soph... 详细信息
来源: 评论
MIPI 2024 Challenge on Nighttime Flare Removal: Methods and Results
arXiv
收藏 引用
arXiv 2024年
作者: Dai, Yuekun Zhang, Dafeng Li, Xiaoming Yue, Zongsheng Li, Chongyi Zhou, Shangchen Feng, Ruicheng Yang, Peiqing Jin, Zhezhu Liu, Guanqun Loy, Chen Change Zhang, Lize Liu, Shuai Feng, Chaoyu Wang, Luyang Chen, Shuan Shao, Guangqi Wang, Xiaotao Lei, Lei Yang, Qirui Cheng, Qihua Xu, Zhiqiang Liu, Yihao Yue, Huanjing Yang, Jingyu Vasluianu, Florin-Alexandru Wu, Zongwei Ciubotariu, George Timofte, Radu Zhang, Zhao Zhao, Suiyi Wang, Bo Zuo, Zhichao Wei, Yanyan Teja, Kuppa Sai Sri Jayakar Reddy, A. Rongali, Girish Mitra, Kaushik Ma, Zhihao Liu, Yongxu Zhang, Wanying Shang, Wei He, Yuhong Peng, Long Yu, Zhongxin Luo, Shaofei Wang, Jian Miao, Yuqi Li, Baiang Wei, Gang Verma, Rakshank Maheshwari, Ritik Tekchandani, Rahul Hambarde, Praful Tazi, Satya Narayan Vipparthi, Santosh Kumar Murala, Subrahmanyam Zhang, Haopeng Hou, Yingli Yao, Mingde Levin, M.S. Sundararajan, Aniruth Hari Kumar, A. Xiaomi Inc. China School of Electrical and Information Engineering Tianjin University China Shenzhen MicroBT Electronics Technology Co. Ltd China Shanghai Artificial Intelligence Laboratory China Computer Vision Lab CAIDAS IFI University of Würzburg Germany Laboratory for Multimedia Computing Hefei University of Technology China Detect Technologies Pvt Ltd India Indian Institute of Technology Madras India Xidian University China Harbin Institute of Technology China Northeastern University China University of Science and Technology of China China Fujian Normal University China Snap Inc. United States Tongji University China Hefei University of Technology China GEC Ajmer India CVPR Lab IIT Ropar India SCSS Trinity College Dublin Ireland Faculty of Robot Science and Engineering Northeastern University China Software College Northeastern University China The Chinese University of Hong Kong China Shiv Nadar University India
The increasing demand for computational photography and imaging on mobile platforms has led to the widespread development and integration of advanced image sensors with novel algorithms in camera systems. However, the... 详细信息
来源: 评论