咨询与建议

限定检索结果

文献类型

  • 709 篇 会议
  • 278 篇 期刊文献
  • 14 册 图书

馆藏范围

  • 1,001 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 595 篇 工学
    • 383 篇 计算机科学与技术...
    • 340 篇 软件工程
    • 132 篇 信息与通信工程
    • 100 篇 生物工程
    • 98 篇 光学工程
    • 96 篇 机械工程
    • 75 篇 控制科学与工程
    • 68 篇 生物医学工程(可授...
    • 36 篇 仪器科学与技术
    • 35 篇 电气工程
    • 35 篇 化学工程与技术
    • 25 篇 电子科学与技术(可...
    • 17 篇 建筑学
    • 16 篇 土木工程
    • 12 篇 安全科学与工程
    • 9 篇 力学(可授工学、理...
  • 345 篇 理学
    • 145 篇 数学
    • 131 篇 物理学
    • 107 篇 生物学
    • 42 篇 统计学(可授理学、...
    • 35 篇 化学
    • 10 篇 系统科学
  • 137 篇 管理学
    • 94 篇 图书情报与档案管...
    • 50 篇 管理科学与工程(可...
    • 16 篇 工商管理
  • 24 篇 医学
    • 24 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
  • 18 篇 艺术学
    • 18 篇 设计学(可授艺术学...
  • 16 篇 法学
    • 16 篇 社会学
  • 5 篇 经济学
  • 3 篇 农学
  • 2 篇 文学
  • 1 篇 教育学

主题

  • 125 篇 feature extracti...
  • 113 篇 pattern recognit...
  • 100 篇 computer vision
  • 84 篇 image segmentati...
  • 75 篇 training
  • 71 篇 support vector m...
  • 68 篇 handwriting reco...
  • 68 篇 character recogn...
  • 48 篇 shape
  • 47 篇 optical characte...
  • 41 篇 accuracy
  • 37 篇 histograms
  • 33 篇 databases
  • 31 篇 testing
  • 30 篇 cameras
  • 29 篇 robustness
  • 28 篇 image edge detec...
  • 28 篇 writing
  • 27 篇 hidden markov mo...
  • 27 篇 kernel

机构

  • 204 篇 computer vision ...
  • 43 篇 computer vision ...
  • 42 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 30 篇 pattern analysis...
  • 28 篇 faculty of compu...
  • 26 篇 shenzhen key lab...
  • 21 篇 siat branch shen...
  • 19 篇 pattern analysis...
  • 19 篇 shanghai ai labo...
  • 18 篇 department of st...
  • 17 篇 sensetime resear...
  • 17 篇 computer vision ...
  • 16 篇 computer vision ...
  • 16 篇 shenzhen key lab...
  • 14 篇 pattern analysis...
  • 14 篇 school of comput...
  • 14 篇 xiamen key labor...
  • 12 篇 pattern analysis...

作者

  • 112 篇 umapada pal
  • 105 篇 pal umapada
  • 60 篇 qiao yu
  • 54 篇 vittorio murino
  • 39 篇 b.b. chaudhuri
  • 32 篇 michael blumenst...
  • 32 篇 palaiahnakote sh...
  • 30 篇 blumenstein mich...
  • 30 篇 alessio del bue
  • 28 篇 murino vittorio
  • 27 篇 yu qiao
  • 27 篇 shivakumara pala...
  • 26 篇 dong chao
  • 25 篇 chaudhuri b.b.
  • 23 篇 u. pal
  • 19 篇 liu xin
  • 18 篇 lu tong
  • 17 篇 wang yali
  • 17 篇 tong lu
  • 16 篇 chanda sukalpa

语言

  • 979 篇 英文
  • 19 篇 其他
  • 3 篇 中文
检索条件"机构=Computer Vision and Pattern"
1001 条 记 录,以下是941-950 订阅
排序:
VideoPipe 2022 Challenge: Real-World Video Understanding for Urban Pipe Inspection
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Yi Zhang, Xuan Li, Ying Liang, Guixin Jiang, Yabing Qiu, Lixia Tang, Haiping Xie, Fei Yao, Wei Dai, Yi Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China Shenzhen Bwell Technology Co. Ltd China Shenzhen Longhua Drainage Co. Ltd China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Video understanding is an important problem in computer vision. Currently, the well-studied task in this research is human action recognition, where the clips are manually trimmed from the long videos, and a single cl... 详细信息
来源: 评论
Affine Non-negative Collaborative Representation Based pattern Classification
arXiv
收藏 引用
arXiv 2020年
作者: Yin, He-Feng Wu, Xiao-Jun Feng, Zhen-Hua Kittler, Josef School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Department of Computer Science University of Surrey GuildfordGU2 7XH United Kingdom Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
—During the past decade, representation-based classification methods have received considerable attention in pattern recognition. In particular, the recently proposed non-negative representation based classification ... 详细信息
来源: 评论
Enabling Frail Subjects Telemonitoring: A Sensor Network System for Enhanced Health Assessment
Enabling Frail Subjects Telemonitoring: A Sensor Network Sys...
收藏 引用
International Conference on Control, Automation and Systems ( ICCAS)
作者: Giulia Bodo Giulio Sciortino Alexey Petrushin Emanuele Seminerio Wanda Morganti Gian Luca Bailo Carlos Beltrán-González Alberto Pilotto Matteo Laffranchi Alessio Del Bue Politecnico di Torino Torino Italy Rehab Technologies Laboratory at Istituto Italiano di Tecnologia Genova Italy Pattern Analysis and Computer Vision at Istituto Italiano di Tecnologia Genova Italy Department of Geriatric Care Geriatrics Unit Neurology and Rehabilitation Galliera Hospital Genoa Italy Department of Interdisciplinary Medicine University of Bari "Aldo Moro" Bari Italy
Telemonitoring, telemedicine, and telerehabilitation are becoming essential technologies for improving health-care. Particularly useful for assessing the physical and cognitive status of frail individuals, telemonitor... 详细信息
来源: 评论
NTIRE 2023 Image Shadow Removal Challenge Report
NTIRE 2023 Image Shadow Removal Challenge Report
收藏 引用
2023 IEEE/CVF Conference on computer vision and pattern Recognition Workshops, CVPRW 2023
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Timofte, Radu Cui, Shuhao Huang, Junshi Tian, Shuman Fan, Mingyuan Zhang, Jiaqi Zhu, Li Wei, Xiaoming Wei, Xiaolin Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Dong, Xiaoyi Zhang, Xi Sheryl Li, Chenghua Leng, Cong Yeo, Woon-Ha Oh, Wang-Taek Lee, Yeo-Reum Ryu, Han-Cheol Luo, Jinting Jiang, Chengzhi Han, Mingyan Wu, Qi Lin, Wenjie Yu, Lei Li, Xinpeng Jiang, Ting Fan, Haoqiang Liu, Shuaicheng Xu, Shuning Song, Binbin Chen, Xiangyu Zhang, Shile Zhou, Jiantao Zhang, Zhao Zhao, Suiyi Zheng, Huan Gao, Yangcheng Wei, Yanyan Wang, Bo Ren, Jiahuan Luo, Yan Kondo, Yuki Miyata, Riku Yasue, Fuma Naruki, Taito Ukita, Norimichi Chang, Hua-En Yang, Hao-Hsiang Chen, Yi-Chung Chiang, Yuan-Chun Huang, Zhi-Kai Chen, Wei-Ting Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Xianwei, Li Fu, Huiyuan Liu, Chunlin Ma, Huadong Fu, Binglan He, Huiming Wang, Mengjia She, Wenxuan Liu, Yu Nathan, Sabari Kansal, Priya Zhang, Zhongjian Yang, Huabin Wang, Yan Zhang, Yanru Phutke, Shruti S. Kulkarni, Ashutosh Khan, Md Raqib Murala, Subrahmanyam Vipparthi, Santosh Kumar Ye, Heng Liu, Zixi Yang, Xingyi Liu, Songhua Wu, Yinwei Jing, Yongcheng Yu, Qianhao Zheng, Naishan Huang, Jie Long, Yuhang Yao, Mingde Zhao, Feng Zhao, Bowen Ye, Nan Shen, Ning Cao, Yanpeng Xiong, Tong Xia, Weiran Li, Dingwen Xia, Shuchen Computer Vision Lab Ifi Caidas University of Würzburg Germany Computer Vision Lab Eth Zürich Switzerland Meituan Group China Department of Information Technology Uppsala University Sweden Institute of Automation Chinese Academy of Sciences Beijing China Nanjing China Maicro Nanjing China Department of Artificial Intelligence Convergence Sahmyook University Seoul Korea Republic of Megvii Technology China University of Electronic Science and Technology of China China University of Macau China China Toyota Technological Institute Japan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Beijing University of Post and Teleconmunication Beijing China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education China Couger Inc. Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar Punjab Rupnagar India Research Institute Singapore National University of Singapore Singapore Research Institute Singapore University of Sydney Australia Brain-Inspired Vision Laboratory Information Science and Technology Institution University of Science and Technology of China China State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou310027 China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou310027 China South China University of Technology China
This work reviews the results of the NTIRE 2023 Challenge on Image Shadow Removal. The described set of solutions were proposed for a novel dataset, which captures a wide range of object-light interactions. It consist... 详细信息
来源: 评论
Erratum to “Identification of different scripts lines from multi-script documents” [Image and vision Computing 20 (2002) 945–954]
收藏 引用
Image and vision Computing 2003年 第11期21卷 1017-1017页
作者: U. Pal B.B. Chaudhuri Computer Vision and Pattern Recognition Unit Indian Statistical Institute 203 B.T. Road Calcutta 700 035 India
来源: 评论
Deep Learning Based Recalibration of SDSS and DESI BAO Alleviates Hubble and Clustering Tensions
arXiv
收藏 引用
arXiv 2024年
作者: Shah, Rahul Mukherjee, Purba Saha, Soumadeep Garain, Utpal Pal, Supratik Physics and Applied Mathematics Unit Indian Statistical Institute 203 B.T. Road West Bengal Kolkata700 108 India Centre for Theoretical Physics Jamia Millia Islamia Delhi New Delhi110025 India Computer Vision and Pattern Recognition Unit Indian Statistical Institute 203 B.T. Road Kolkata700 108 India
Conventional calibration of Baryon Acoustic Oscillations (BAO) data relies on estimation of the sound horizon at drag epoch rd from early universe observations by assuming a cosmological model. We present a recalibrat... 详细信息
来源: 评论
MSRF-Net: A Multi-Scale Residual Fusion Network for Biomedical Image Segmentation
arXiv
收藏 引用
arXiv 2021年
作者: Srivastava, Abhishek Jha, Debesh Chanda, Sukalpa Pal, Umapada Johansen, Håvard D. Johansen, Dag Riegler, Michael A. Ali, Sharib Halvorsen, Pål Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India SimulaMet Oslo Norway UiT The Arctic University of Norway Tromsø Norway Østfold University College Halden Norway Indian Statistical Institute Kolkata India The Department of Engineering Science University of Oxford Oxford NIHR Biomedical Research Centre Oxford United Kingdom Oslo Metropolitan University Oslo Norway
Methods based on convolutional neural networks have improved the performance of biomedical image segmentation However, most of these methods cannot efficiently segment objects of variable sizes and train on small and ... 详细信息
来源: 评论
Hierarchical Local Global Transformer for Point Clouds Analysis
SSRN
收藏 引用
SSRN 2023年
作者: Li, Dilong Zheng, Shenghong Chen, Ziyi Li, Xiang Wang, Lanying Du, Jixiang College of Computer Science and Technology Fujian Key Laboratory of Big Data Intelligence and Security Xiamen Key Laboratory of Computer Vision and Pattern Recognition Xiamen Key Laboratory of Data Security and Blockchain Technology Huaqiao University FJ Xiamen361021 China School of Economics and Finance Huaqiao University FJ Quanzhou362021 China Department of Geography and Environmental Management University of Waterloo WaterlooONN2L 3G1 Canada
Transformer networks have demonstrated remarkable performance in point cloud analysis. However, achieving a balance between local regional context and global long-range context learning remains a significant challenge... 详细信息
来源: 评论
BasicVSR: The search for essential components in video super-resolution and beyond
arXiv
收藏 引用
arXiv 2020年
作者: Chan, Kelvin C.K. Wang, Xintao Yu, Ke Dong, Chao Loy, Chen Change S-Lab Nanyang Technological University Singapore Applied Research Center Tencent PCG CUHK – SenseTime Joint Lab Chinese University of Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Video super-resolution (VSR) approaches tend to have more components than the image counterparts as they need to exploit the additional temporal dimension. Complex designs are not uncommon. In this study, we wish to u... 详细信息
来源: 评论
A comprehensive study on temporal modeling for online action detection
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wen Peng, Xiaojiang Qiao, Yu Cheng, Jian School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu Sichuan611731 China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
—Online action detection (OAD) is a practical yet challenging task, which has attracted increasing attention in recent years. A typical OAD system mainly consists of three modules: a frame-level feature extractor whi... 详细信息
来源: 评论