咨询与建议

限定检索结果

文献类型

  • 569 篇 会议
  • 238 篇 期刊文献
  • 11 册 图书

馆藏范围

  • 818 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 497 篇 工学
    • 337 篇 计算机科学与技术...
    • 298 篇 软件工程
    • 115 篇 信息与通信工程
    • 86 篇 生物工程
    • 78 篇 光学工程
    • 75 篇 机械工程
    • 63 篇 控制科学与工程
    • 54 篇 生物医学工程(可授...
    • 32 篇 化学工程与技术
    • 29 篇 仪器科学与技术
    • 28 篇 电气工程
    • 20 篇 电子科学与技术(可...
    • 9 篇 建筑学
    • 9 篇 安全科学与工程
    • 8 篇 力学(可授工学、理...
    • 8 篇 土木工程
    • 8 篇 交通运输工程
  • 298 篇 理学
    • 129 篇 数学
    • 115 篇 物理学
    • 93 篇 生物学
    • 39 篇 统计学(可授理学、...
    • 33 篇 化学
  • 122 篇 管理学
    • 83 篇 图书情报与档案管...
    • 46 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 19 篇 医学
    • 19 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
  • 17 篇 艺术学
    • 17 篇 设计学(可授艺术学...
  • 11 篇 法学
    • 11 篇 社会学
  • 4 篇 经济学
  • 2 篇 文学
  • 2 篇 农学
  • 1 篇 教育学

主题

  • 106 篇 pattern recognit...
  • 101 篇 feature extracti...
  • 88 篇 computer vision
  • 81 篇 image segmentati...
  • 67 篇 character recogn...
  • 65 篇 handwriting reco...
  • 62 篇 support vector m...
  • 56 篇 training
  • 46 篇 optical characte...
  • 41 篇 shape
  • 35 篇 accuracy
  • 32 篇 databases
  • 28 篇 histograms
  • 28 篇 testing
  • 27 篇 writing
  • 25 篇 image edge detec...
  • 25 篇 text recognition
  • 25 篇 image recognitio...
  • 21 篇 face recognition
  • 20 篇 hidden markov mo...

机构

  • 206 篇 computer vision ...
  • 43 篇 computer vision ...
  • 42 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 28 篇 faculty of compu...
  • 26 篇 shenzhen key lab...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 department of st...
  • 17 篇 computer vision ...
  • 17 篇 computer vision ...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 school of comput...
  • 12 篇 computer vision ...
  • 12 篇 xiamen key labor...
  • 12 篇 indian statistic...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...

作者

  • 110 篇 umapada pal
  • 106 篇 pal umapada
  • 59 篇 qiao yu
  • 39 篇 b.b. chaudhuri
  • 32 篇 michael blumenst...
  • 32 篇 palaiahnakote sh...
  • 30 篇 blumenstein mich...
  • 27 篇 yu qiao
  • 27 篇 shivakumara pala...
  • 27 篇 dong chao
  • 26 篇 chaudhuri b.b.
  • 23 篇 u. pal
  • 19 篇 liu xin
  • 18 篇 lu tong
  • 17 篇 wang yali
  • 17 篇 tong lu
  • 16 篇 chanda sukalpa
  • 15 篇 chaudhuri bidyut...
  • 13 篇 fumitaka kimura
  • 13 篇 garain utpal

语言

  • 796 篇 英文
  • 18 篇 其他
  • 4 篇 中文
检索条件"机构=Computer Vision and Pattern Recognition"
818 条 记 录,以下是351-360 订阅
排序:
Deep convolution neural networks cascaded improved boosted forest for pedestrian detection
收藏 引用
Journal of computers (Taiwan) 2018年 第5期29卷 15-28页
作者: Xu, Zhi-Tong Luo, Yan-Min Liu, Pei-Zhong Du, Yong-Zhao College of Computer Science and Technology Huaqiao University Xiamen361021 China Key Laboratory for Computer Vision and Pattern Recognition of Xiamen City Huaqiao University Xiamen361021 China College of Engineering Huaqiao University Quanzhou362000 China
Due to the resolution of small size pedestrian is relatively low, and the hard negative background is very similar to people, therefore, detecting small size pedestrian or detecting pedestrian from hard negative backg... 详细信息
来源: 评论
NTIRE 2022 Challenge on Stereo Image Super-Resolution: Methods and Results
arXiv
收藏 引用
arXiv 2022年
作者: Guo, Yulan Wang, Longguang Wang, Yingqian Li, Juncheng Gu, Shuhang Timofte, Radu Chen, Liangyu Chu, Xiaojie Yu, Wenqing Jin, Kai Wei, Zeqiang Guo, Sha Yang, Angulia Zhou, Xiuzhuang Guo, Guodong Xiao, Huaxin Yan, Shen Liu, Yuxiang Cai, Hanxiao Dai, Bin Peng, Feiyue Cao, Pu Nie, Yang Yang, Lu Song, Qing Hu, Xiaotao Xu, Jun Xu, Mai Jing, Junpeng Deng, Xin Xing, Qunliang Qiao, Minglang Guan, Zhenyu Guo, Wenlong Peng, Chenxu Chen, Zan Chen, Junyang Li, Hao Chen, Junbin Li, Weijie Yang, Zhijing Li, Gen Li, Aijin Sun, Lei Zhang, Dafeng Liu, Shizhuo Zhang, Jiangtao Qu, Yanyun Yang, Hao-Hsiang Huang, Zhi-Kai Chen, Wei-Ting Chang, Hua-En Kuo, Sy-Yen Liang, Qiaohui Lin, Jianxin Wang, Yijun Yin, Lianying Zhang, Rongju Zhao, Wei Xiao, Peng Xu, Rongjian Zhang, Zhilu Zuo, Wangmeng Guo, Hansheng Gao, Guangwei Zeng, Tieyong Kim, Joohyeok Kim, HyeonA Park, Eunpil Sim, Jae-Young Pi, Huicheng Zhang, Shunli Zhai, Jucai Zeng, Pengcheng Liu, Yang Ma, Chihao Huang, Yulin Chen, Junying National University of Defense Technology China The Chinese University of Hong Kong Hong Kong The University of Sydney Australia University of Würzburg ETH Zürich Switzerland MEGVII Technology China Peking University China Bigo Technology Pte. Ltd Singapore Smart Healthcare Innovation Lab Beijing University of Posts and Telecommunications China School of Artificial Intelligence Beijing University of Posts and Telecommunications China Head of Institute of Deep Learning Baidu Research College of Systems Engineering National University of Defense Technology China College of Liberal Arts and Sciences National University of Defense Technology China Pattern Recognition and Intelligent Vision Lab Beijing University of Posts and Telecommunications China College of Computer Science Nankai University Tianjin China School of Statistics and Data Science Nankai University Tianjin Singapore Beihang University China Zhejiang University of Technology China Guangdong University of Technology China Tencent OVBU SRC-B Xiamen University China Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Electronics Engineering National Taiwan University Taiwan College of Computer Science and Electronic Engineering Hunan University China Harbin Institude of Technology China The Chinese University of Hong Kong Hong Kong Nanjing University of Posts and Telecommunications China Department of Electrical Engineering Ulsan National Institute of Science and Technology Korea Republic of Graduate School of Artificial Intelligence Ulsan National Institute of Science and Technology Korea Republic of Beijing Jiaotong University China City University of Hong Kong Hong Kong South China University of Technology China
In this paper, we summarize the 1st NTIRE challenge on stereo image super-resolution (restoration of rich details in a pair of low-resolution stereo images) with a focus on new solutions and results. This challenge ha... 详细信息
来源: 评论
ISI at the Sigmorphon 2017 shared task on morphological reinflection
ISI at the Sigmorphon 2017 shared task on morphological rein...
收藏 引用
2017 CoNLL SIGMORPHON Shared Task: Universal Morphological Reinflection, CoNLL 2017
作者: Chakrabarty, Abhisek Garain, Utpal Computer Vision and Pattern Recognition Unit Indian Statistical Institute 203 B.T. Road Kolkata700108 India
We present a system for morphological reinflection based on the LSTM model. Given an input word and morphosyntactic descriptions, the problem is to classify the proper edit tree that, applied on the input word, produc... 详细信息
来源: 评论
Efficient Audio-Visual Speaker recognition via Deep Heterogeneous Feature Fusion  12th
Efficient Audio-Visual Speaker Recognition via Deep Heteroge...
收藏 引用
12th Chinese Conference on Biometric recognition, CCBR 2017
作者: Liu, Yu-Hang Liu, Xin Fan, Wentao Zhong, Bineng Du, Ji-Xiang Department of Computer Science Huaqiao University Xiamen361021 China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University Xiamen361021 China
Audio-visual speaker recognition (AVSR) has long been an active research area primarily due to its complementary information for reliable access control in biometric system, and it is a challenging problem mainly attr... 详细信息
来源: 评论
Preface
Advances in Intelligent Systems and Computing
收藏 引用
Advances in Intelligent Systems and Computing 2020年 1022 AISC卷 v-vi页
作者: Chaudhuri, Bidyut B. Nakagawa, Masaki Khanna, Pritee Kumar, Sanjeev Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Techno India University Kolkata India Department of Advanced Information Technology and Computer Sciences Tokyo Institute of Agriculture and Technology Koganei Tokyo Japan Department of Computer Science Indian Institute of Information Technology Design and Manufacturing Jabalpur Jabalpur Madhya Pradesh India Department of Mathematics Indian Institute of Technology Roorkee Roorkee Uttarakhand India
来源: 评论
CASIA-SURF: A Large-scale Multi-modal Benchmark for Face Anti-spoofing
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Shifeng Liu, Ajian Wan, Jun Liang, Yanyan Guo, Guogong Escalera, Sergio Escalante, Hugo Jair Li, Stan Z. National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China Macau University of Science and Technology Macau China Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application Universitat de Barcelona Computer Vision Center Barcelona Catalonia Instituto Nacional de Astrofsica Ptica y Electrnica Puebla72840 Mexico
Face anti-spoofing is essential to prevent face recognition systems from a security breach. Much of the progresses have been made by the availability of face anti-spoofing benchmark datasets in recent years. However, ... 详细信息
来源: 评论
ICDAR2019 Robust Reading Challenge on Multi-lingual Scene Text Detection and recognition — RRC-MLT-2019
ICDAR2019 Robust Reading Challenge on Multi-lingual Scene Te...
收藏 引用
International Conference on Document Analysis and recognition
作者: Nibal Nayef Yash Patel Michal Busta Pinaki Nath Chowdhury Dimosthenis Karatzas Wafa Khlif Jiri Matas Umapada Pal Jean-Christophe Burie Cheng-lin Liu Jean-Marc Ogier no affiliation The Robotics Institute Carnegie Mellon Universiry Pittsburgh USA Department of Cybernetics Czech Technical University Prague Czech Republic CVPR unit Indian Statistical Institute India Computer Vision Center Universitat Autònoma de Barcelona Spain L3i Laboratory University of La Rochelle France National Laboratory of Pattern Recognition Institute of Automation of Chinese Academy of Sciences China
With the growing cosmopolitan culture of modern cities, the need of robust Multi-Lingual scene Text (MLT) detection and recognition systems has never been more immense. With the goal to systematically benchmark and pu... 详细信息
来源: 评论
ICDAR2019 Robust reading challenge on multi-lingual scene text detection and recognition – RRC-MLT-2019
arXiv
收藏 引用
arXiv 2019年
作者: Nayef, Nibal Patel, Yash Busta, Michal Chowdhury, Pinaki Nath Karatzas, Dimosthenis Khlif, Wafa Matas, Jiri Pal, Umapada Burie, Jean-Christophe Liu, Cheng-lin Ogier, Jean-Marc L3i Laboratory University of La Rochelle France Computer Vision Center Universitat Autònoma de Barcelona Spain CVPR unit Indian Statistical Institute India Robotics Institute Carnegie Mellon Universiry Pittsburgh United States Center for Machine Perception Department of Cybernetics Czech Technical University Prague Czech Republic National Laboratory of Pattern Recognition Institute of Automation of Chinese Academy of Sciences China
With the growing cosmopolitan culture of modern cities, the need of robust Multi-Lingual scene Text (MLT) detection and recognition systems has never been more immense. With the goal to systematically benchmark and pu... 详细信息
来源: 评论
More Realistic and Efficient Face-Based Mobile Authentication using CNNs
More Realistic and Efficient Face-Based Mobile Authenticatio...
收藏 引用
International Joint Conference on Neural Networks
作者: Abhijit Das Abira Sengupta Muhammad Saqib Umapada Pal Michael Blumenstein Center for Artificial Intelligence School of Software University of Technology Sydney Australia Department of Computer Science Kalyani Government Engineering College Kalyani India Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India
In this work, we propose a more realistic and efficient face-based mobile authentication technique using CNNs. This paper discusses and explores an inevitable problem of using face images for mobile authentication, ta... 详细信息
来源: 评论
Music Instrument Identification Based on a 2-D Representation
Music Instrument Identification Based on a 2-D Representatio...
收藏 引用
International Conference on Electrical, Electronics, Communication, computer and Optimization Techniques (ICEECCOT)
作者: Alekhya Ghosh Arghadeep Pal Dibakar Sil Sarbani Palit Electronics and Communication Engineering IRPEL University of Calcutta Kolkata India Electronics and Communication Engineering National Institute of Technology Durgapur India Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India
Automatic recognition of musical instruments has been a great problem in the field of digital signal processing. In this work a novel, compact set of features obtained by transforming a music signal to the spatial dom... 详细信息
来源: 评论