咨询与建议

限定检索结果

文献类型

  • 569 篇 会议
  • 238 篇 期刊文献
  • 11 册 图书

馆藏范围

  • 818 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 497 篇 工学
    • 337 篇 计算机科学与技术...
    • 298 篇 软件工程
    • 115 篇 信息与通信工程
    • 86 篇 生物工程
    • 78 篇 光学工程
    • 75 篇 机械工程
    • 63 篇 控制科学与工程
    • 54 篇 生物医学工程(可授...
    • 32 篇 化学工程与技术
    • 29 篇 仪器科学与技术
    • 28 篇 电气工程
    • 20 篇 电子科学与技术(可...
    • 9 篇 建筑学
    • 9 篇 安全科学与工程
    • 8 篇 力学(可授工学、理...
    • 8 篇 土木工程
    • 8 篇 交通运输工程
  • 298 篇 理学
    • 129 篇 数学
    • 115 篇 物理学
    • 93 篇 生物学
    • 39 篇 统计学(可授理学、...
    • 33 篇 化学
  • 122 篇 管理学
    • 83 篇 图书情报与档案管...
    • 46 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 19 篇 医学
    • 19 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
  • 17 篇 艺术学
    • 17 篇 设计学(可授艺术学...
  • 11 篇 法学
    • 11 篇 社会学
  • 4 篇 经济学
  • 2 篇 文学
  • 2 篇 农学
  • 1 篇 教育学

主题

  • 106 篇 pattern recognit...
  • 101 篇 feature extracti...
  • 88 篇 computer vision
  • 81 篇 image segmentati...
  • 67 篇 character recogn...
  • 65 篇 handwriting reco...
  • 62 篇 support vector m...
  • 56 篇 training
  • 46 篇 optical characte...
  • 41 篇 shape
  • 35 篇 accuracy
  • 32 篇 databases
  • 28 篇 histograms
  • 28 篇 testing
  • 27 篇 writing
  • 25 篇 image edge detec...
  • 25 篇 text recognition
  • 25 篇 image recognitio...
  • 21 篇 face recognition
  • 20 篇 hidden markov mo...

机构

  • 206 篇 computer vision ...
  • 43 篇 computer vision ...
  • 42 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 28 篇 faculty of compu...
  • 26 篇 shenzhen key lab...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 department of st...
  • 17 篇 computer vision ...
  • 17 篇 computer vision ...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 school of comput...
  • 12 篇 computer vision ...
  • 12 篇 xiamen key labor...
  • 12 篇 indian statistic...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...

作者

  • 110 篇 umapada pal
  • 106 篇 pal umapada
  • 59 篇 qiao yu
  • 39 篇 b.b. chaudhuri
  • 32 篇 michael blumenst...
  • 32 篇 palaiahnakote sh...
  • 30 篇 blumenstein mich...
  • 27 篇 yu qiao
  • 27 篇 shivakumara pala...
  • 27 篇 dong chao
  • 26 篇 chaudhuri b.b.
  • 23 篇 u. pal
  • 19 篇 liu xin
  • 18 篇 lu tong
  • 17 篇 wang yali
  • 17 篇 tong lu
  • 16 篇 chanda sukalpa
  • 15 篇 chaudhuri bidyut...
  • 13 篇 fumitaka kimura
  • 13 篇 garain utpal

语言

  • 796 篇 英文
  • 18 篇 其他
  • 4 篇 中文
检索条件"机构=Computer Vision and Pattern Recognition"
818 条 记 录,以下是761-770 订阅
排序:
AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks
arXiv
收藏 引用
arXiv 2021年
作者: Roy, Swalpa Kumar Paoletti, Mercedes E. Haut, Juan M. Dubey, Shiv Ram Kar, Purbayan Plaza, Antonio Chaudhuri, Bidyut B. The Computer Science and Engineering Alipurduar Government Engineering and Management College 736206 India The Hyperspectral Computing Laboratory Department of Technology of Computers and Communications University of Extremadura Cáceres10003 Spain The Computer Vision and Biometrics Lab Indian Institute of Information Technology Prayagraj Uttar Pradesh Allahabad211015 India The Media Analysis Group Sony Research India Private Limited Karnataka Bangalore560103 India The Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India
Convolutional neural networks (CNNs) are trained using stochastic gradient descent (SGD)-based optimizers. Recently, the adaptive moment estimation (Adam) optimizer has become very popular due to its adaptive momentum... 详细信息
来源: 评论
PIPAL: a Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration
arXiv
收藏 引用
arXiv 2020年
作者: Gu, Jinjin Cai, Haoming Chen, Haoyu Ye, Xiaoxing Ren, Jimmy S. Dong, Chao School of Data Science Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SenseTime Research SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
Cross Domain Object Detection by Target-Perceived Dual Branch Distillation
arXiv
收藏 引用
arXiv 2022年
作者: He, Mengzhe Wang, Yali Wu, Jiaxi Wang, Yiru Li, Hanqing Li, Bo Gan, Weihao Wu, Wei Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China SenseTime Research University of Chinese Academy of Science China Shanghai AI Laboratory Shanghai China Beihang University China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Cross domain object detection is a realistic and challenging task in the wild. It suffers from performance degradation due to large shift of data distributions and lack of instance-level annotations in the target doma... 详细信息
来源: 评论
Machine Learning and computer vision Techniques in Continuous Beehive Monitoring Applications: A Survey
arXiv
收藏 引用
arXiv 2022年
作者: Bilik, Simon Zemcik, Tomas Kratochvila, Lukas Ricanek, Dominik Richter, Miloslav Zambanini, Sebastian Horak, Karel Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Technická 3058/10 Brno61600 Czech Republic Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering Lappeenranta-Lahti University of Technology LUT Yliopistonkatu 34 Lappeenranta53850 Finland Computer Vision Lab Institute of Visual Computing & Human-Centered Technology Faculty of Informatics TU Wien Favoritenstr. 9/193-1 ViennaA-1040 Austria
Wide use and availability of machine learning and computer vision techniques allows development of relatively complex monitoring systems in many domains. Besides the traditional industrial domain, new applications app... 详细信息
来源: 评论
CRNN Based Jersey-Bib Number/Text recognition in Sports and Marathon Images
CRNN Based Jersey-Bib Number/Text Recognition in Sports and ...
收藏 引用
International Conference on Document Analysis and recognition
作者: Sauradip Nag Raghavendra Ramachandra Palaiahnakote Shivakumara Umapada Pal Tong Lu Mohan Kankanhalli Department of Computer Science & Engineering Kalyani Government Engineering College Kalyani India Faculty of Information Technology and Electrical Engineering Norwegian University of Science and Technology Norway Faculty of Computer System and Information Technology University of Malaya Malaysia Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India National Key Lab for Novel Software Technology Nanjing University China Department of computer science National University of Singapore Singapore
The primary challenge in tracing the participants in sports and marathon video or images is to detect and localize the jersey/Bib number that may present in different regions of their outfit captured in cluttered envi... 详细信息
来源: 评论
A Simple yet Effective Network based on vision Transformer for Camouflaged Object and Salient Object Detection
arXiv
收藏 引用
arXiv 2024年
作者: Hao, Chao Yu, Zitong Liu, Xin Xu, Jun Yue, Huanjing Yang, Jingyu The School of Electrical and Information Engineering Tianjin University Tianjin300072 China The School of Computing and Information Technology Great Bay University Dongguan523000 China The Computer Vision and Pattern Recognition Laboratory Lappeenranta-Lahti University of Technology LUT Lappeenranta53850 Finland The School of Statistics and Data Science Nankai University Tianjin300072 China
Camouflaged object detection (COD) and salient object detection (SOD) are two distinct yet closely-related computer vision tasks widely studied during the past decades. Though sharing the same purpose of segmenting an... 详细信息
来源: 评论
When Face recognition Meets with Deep Learning: An Evaluation of Convolutional Neural Networks for Face recognition
When Face Recognition Meets with Deep Learning: An Evaluatio...
收藏 引用
International Conference on computer vision Workshops (ICCV Workshops)
作者: Guosheng Hu Yongxin Yang Dong Yi Josef Kittler William Christmas Stan Z. Li Timothy Hospedales Centre for Vision Speech and Signal Processing University of Surrey UK Indicates equal contribution LEAR team Inria Grenoble Rhone-Alpes Montbonnot France Electronic Engineering and Computer Science Queen Mary University of London UK Chinese Academy of Sciences Center for Biometrics and Security Research & National Laboratory of Pattern Recognition China
Deep learning, in particular Convolutional Neural Network (CNN), has achieved promising results in face recognition recently. However, it remains an open question: why CNNs work well and how to design a 'good'... 详细信息
来源: 评论
Regional attention with architecture-rebuilt 3D network for RGB-D gesture recognition
arXiv
收藏 引用
arXiv 2021年
作者: Zhou, Benjia Li, Yunan Wan, Jun Macau University of Science and Technology China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China School of Computer Science and Technology Xidian Univeristy China Xi'an Key Laboratory of Big Data and Intelligent Vision China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China
Human gesture recognition has drawn much attention in the area of computer vision. However, the performance of gesture recognition is always influenced by some gesture-irrelevant factors like the background and the cl... 详细信息
来源: 评论
TTPP: Temporal transformer with progressive prediction for efficient action anticipation
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wen Peng, Xiaojiang Su, Yanzhou Qiao, Yu Cheng, Jian School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu Sichuan611731 China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Video action anticipation aims to predict future action categories from observed frames. Current state-of-the-art approaches mainly resort to recurrent neural networks to encode history information into hidden states,... 详细信息
来源: 评论
Self-slimmed vision Transformer
arXiv
收藏 引用
arXiv 2021年
作者: Zong, Zhuofan Li, Kunchang Song, Guanglu Wang, Yali Qiao, Yu Leng, Biao Liu, Yu School of Computer Science and Engineering Beihang University China SenseTime Research China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China Shanghai AI Laboratory China
vision transformers (ViTs) have become the popular structures and outperformed convolutional neural networks (CNNs) on various vision tasks. However, such powerful transformers bring a huge computation burden, because... 详细信息
来源: 评论