咨询与建议

限定检索结果

文献类型

  • 186 篇 会议
  • 112 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 299 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 214 篇 工学
    • 141 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 59 篇 信息与通信工程
    • 41 篇 光学工程
    • 30 篇 生物工程
    • 25 篇 生物医学工程(可授...
    • 24 篇 控制科学与工程
    • 20 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 7 篇 电气工程
    • 6 篇 建筑学
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 材料科学与工程(可...
    • 4 篇 土木工程
    • 4 篇 交通运输工程
  • 136 篇 理学
    • 61 篇 数学
    • 56 篇 物理学
    • 32 篇 生物学
    • 13 篇 统计学(可授理学、...
    • 11 篇 化学
    • 8 篇 系统科学
  • 56 篇 管理学
    • 41 篇 图书情报与档案管...
    • 17 篇 管理科学与工程(可...
  • 10 篇 医学
    • 9 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 艺术学
  • 2 篇 教育学
  • 1 篇 文学

主题

  • 17 篇 feature extracti...
  • 15 篇 image segmentati...
  • 15 篇 convolution
  • 13 篇 semantics
  • 12 篇 image reconstruc...
  • 11 篇 computer vision
  • 10 篇 image edge detec...
  • 9 篇 image color anal...
  • 8 篇 face recognition
  • 7 篇 generative adver...
  • 7 篇 three-dimensiona...
  • 7 篇 face
  • 7 篇 training
  • 6 篇 pixels
  • 6 篇 shape
  • 5 篇 writing
  • 5 篇 pattern recognit...
  • 4 篇 image enhancemen...
  • 4 篇 support vector m...
  • 4 篇 semantic segment...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 31 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 guangzhou power ...
  • 5 篇 arc lab tencent ...

作者

  • 59 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 19 篇 pal umapada
  • 17 篇 umapada pal
  • 17 篇 wang yali
  • 17 篇 lu tong
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 maier andreas
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 292 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Pattern Recognition Lab."
299 条 记 录,以下是1-10 订阅
排序:
Generalist Segmentation Algorithm for Photoreceptors Analysis in Adaptive Optics Imaging  27th
Generalist Segmentation Algorithm for Photoreceptors Analys...
收藏 引用
27th International Conference on pattern recognition, ICPR 2024
作者: Kulyabin, Mikhail Sindel, Aline Pedersen, Hilde R. Gilson, Stuart Baraas, Rigmor Maier, Andreas Pattern Recognition Lab Department of Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany National Centre for Optics Vision and Eye Care Faculty of Health and Social Sciences University of South-Eastern Norway Kongsberg Norway
Analyzing the cone photoreceptor pattern in images obtained from the living human retina using quantitative methods can be crucial for the early detection and management of various eye conditions. Confocal adaptive op... 详细信息
来源: 评论
Non-Uniform Illumination Attack for Fooling Convolutional Neural Networks
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2025年
作者: Jain, Akshay Dubey, Shiv Ram Singh, Satish Kumar Santosh, K.C. Chaudhuri, Bidyut Baran Indian Institute of Information Technology Allahabad Computer Vision and Biometrics Lab Department of Information Technology Uttar Pradesh Prayagraj211015 India University of South Dakota AI Research Lab Department of Computer Science VermillionSD57069 United States Indian Statistical Institute Computer Vision and Pattern Recognition Unit Kolkata700108 India
Convolutional Neural Networks (CNNs) have made remarkable strides;however, they remain susceptible to vulnerabilities, particularly to image perturbations that humans can easily recognize. This weakness, often termed ... 详细信息
来源: 评论
CodePhys: Robust Video-Based Remote Physiological Measurement Through Latent Codebook Querying
收藏 引用
IEEE Journal of Biomedical and Health Informatics 2025年 PP卷 PP页
作者: Chu, Shuyang Xia, Menghan Yuan, Mengyao Liu, Xin Seppanen, Tapio Zhao, Guoying Shi, Jingang Xi'an Jiaotong University School of Software Engineering Xi'an China Tencent Ai Lab Shenzhen China Lappeenranta-Lahti University of Technology Lut Computer Vision and Pattern Recognition Laboratory Lappeenranta53850 Finland University of Oulu Center for Machine Vision and Signal Analysis Finland
Remote photoplethysmography (rPPG) aims to measure non-contact physiological signals from facial videos, which has shown great potential in many applications. Most existing methods directly extract video-based rPPG fe... 详细信息
来源: 评论
CodePhys: Robust Video-based Remote Physiological Measurement through Latent Codebook Querying
arXiv
收藏 引用
arXiv 2025年
作者: Chu, Shuyang Xia, Menghan Yuan, Mengyao Liu, Xin Seppanen, Tapio Zhao, Guoying Shi, Jingang The School of Software Engineering Xi’an Jiaotong University Xi’an China The Tencent AI Lab Shenzhen China The Computer Vision and Pattern Recognition Laboratory Lappeenranta-Lahti University of Technology LUT Lappeenranta53850 Finland The Center for Machine Vision and Signal Analysis University of Oulu Finland
Remote photoplethysmography (rPPG) aims to measure non-contact physiological signals from facial videos, which has shown great potential in many applications. Most existing methods directly extract video-based rPPG fe... 详细信息
来源: 评论
LVAgent: Long Video Understanding by Multi-Round Dynamical Collab.ration of MLLM Agents
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Boyu Yue, Zhengrong Chen, Siran Wang, Zikang Liu, Yang Li, Peng Wang, Yali Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Tsinghua University Beijing China Dept. of Comp. Sci. & Tech. Institute for AI Tsinghua University Beijing China Shanghai Artificial Intelligence Laboratory China Shanghai Jiao Tong University China
Existing Multimodal Large Language Models (MLLMs) encounter significant challenges in modeling the temporal context within long videos. Currently, mainstream Agent-based methods use external tools (e.g., search engine... 详细信息
来源: 评论
DarkGAN: Night Image Enhancement Using Generative Adversarial Networks  5th
DarkGAN: Night Image Enhancement Using Generative Adversaria...
收藏 引用
5th International Conference on computer vision and Image Processing, CVIP 2020
作者: Alaspure, Prasen Hambarde, Praful Dudhane, Akshay Murala, Subrahmanyam Computer Vision and Pattern Recognition Lab IIT Ropar Rupnagar India
Low light image enhancement is one of the challenging tasks in computer vision, and it becomes more difficult when images are very dark. Recently, most of low light image enhancement work is done either on synthetic d... 详细信息
来源: 评论
Blind Image Inpainting via Omni-dimensional Gated Attention and Wavelet Queries
Blind Image Inpainting via Omni-dimensional Gated Attention ...
收藏 引用
2023 IEEE/CVF Conference on computer vision and pattern recognition Workshops, CVPRW 2023
作者: Phutke, Shruti S. Kulkarni, Ashutosh Vipparthi, Santosh Kumar Murala, Subrahmanyam Indian Institute of Technology Ropar Computer Vision and Pattern Recognition Lab Punjab Rupnagar India
Blind image inpainting is a crucial restoration task that does not demand additional mask information to restore the corrupted regions. Yet, it is a very less explored research area due to the difficulty in discrimina... 详细信息
来源: 评论
Revisiting the Generalization Problem of Low-level vision Models Through the Lens of Image Deraining
arXiv
收藏 引用
arXiv 2025年
作者: Hu, Jinfan You, Zhiyuan Gu, Jinjin Zhu, Kaiwen Xue, Tianfan Dong, Chao Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China The Chinese University of Hong Kong 999077 Hong Kong The University of Sydney NSW2006 Australia Shanghai Jiao Tong University Shanghai200240 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shenzhen University of Advanced Technology Shenzhen518055 China
Generalization remains a significant challenge for low-level vision models, which often struggle with unseen degradations in real-world scenarios despite their success in controlled benchmarks. In this paper, we revis... 详细信息
来源: 评论
4D photogeometric face recognition with time-of-flight sensors
4D photogeometric face recognition with time-of-flight senso...
收藏 引用
2011 IEEE Workshop on Applications of computer vision, WACV 2011
作者: Bauer, Sebastian Wasza, Jakob Müller, Kerstin Hornegger, Joachim Pattern Recognition Lab. Department of Computer Science University Erlangen-Nuremberg Germany
Methods for 2D/3D face recognition typically combine results obtained independently from the 2D and 3D data, respectively. There has not been much emphasis on data fusion at an early stage, even though it is at least ... 详细信息
来源: 评论
Classification of gothic and baroque architectural elements
Classification of gothic and baroque architectural elements
收藏 引用
2012 19th International Conference on Systems, Signals and Image Processing, IWSSIP 2012
作者: Shalunts, Gayane Haxhimusa, Yll Sablatnig, Robert Institute of Computer Aided Automation Computer Vision Lab. Vienna University of Technology Austria Institute of Computer Graphics and Algorithms Pattern Recognition and Image Processing Lab. Vienna University of Technology Austria
Architectural elements are the components and details of buildings. Their unique set, combination, design, construction technique form the architectural style of buildings. Building facade classification by architectu... 详细信息
来源: 评论