咨询与建议

限定检索结果

文献类型

  • 186 篇 会议
  • 112 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 299 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 214 篇 工学
    • 141 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 59 篇 信息与通信工程
    • 41 篇 光学工程
    • 30 篇 生物工程
    • 25 篇 生物医学工程(可授...
    • 24 篇 控制科学与工程
    • 20 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 7 篇 电气工程
    • 6 篇 建筑学
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 材料科学与工程(可...
    • 4 篇 土木工程
    • 4 篇 交通运输工程
  • 136 篇 理学
    • 61 篇 数学
    • 56 篇 物理学
    • 32 篇 生物学
    • 13 篇 统计学(可授理学、...
    • 11 篇 化学
    • 8 篇 系统科学
  • 56 篇 管理学
    • 41 篇 图书情报与档案管...
    • 17 篇 管理科学与工程(可...
  • 10 篇 医学
    • 9 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 艺术学
  • 2 篇 教育学
  • 1 篇 文学

主题

  • 17 篇 feature extracti...
  • 15 篇 image segmentati...
  • 15 篇 convolution
  • 13 篇 semantics
  • 12 篇 image reconstruc...
  • 11 篇 computer vision
  • 10 篇 image edge detec...
  • 9 篇 image color anal...
  • 8 篇 face recognition
  • 7 篇 generative adver...
  • 7 篇 three-dimensiona...
  • 7 篇 face
  • 7 篇 training
  • 6 篇 pixels
  • 6 篇 shape
  • 5 篇 writing
  • 5 篇 pattern recognit...
  • 4 篇 image enhancemen...
  • 4 篇 support vector m...
  • 4 篇 semantic segment...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 31 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 guangzhou power ...
  • 5 篇 arc lab tencent ...

作者

  • 59 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 19 篇 pal umapada
  • 17 篇 umapada pal
  • 17 篇 wang yali
  • 17 篇 lu tong
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 maier andreas
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 292 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Pattern Recognition Lab."
299 条 记 录,以下是91-100 订阅
排序:
Varicolored Image De-Hazing
Varicolored Image De-Hazing
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Akshay Dudhane Kuldeep M. Biradar Prashant W. Patil Praful Hambarde Subrahmanyam Murala Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar INDIA Indian Institute of Technology Ropar Ropar India
The quality of images captured in bad weather is often affected by chromatic casts and low visibility due to the presence of atmospheric particles. Restoration of the color balance is often ignored in most of the exis... 详细信息
来源: 评论
Size adaptive selection of most informative features  25
Size adaptive selection of most informative features
收藏 引用
25th AAAI Conference on Artificial Intelligence and the 23rd Innovative Applications of Artificial Intelligence Conference, AAAI-11 / IAAI-11
作者: Liu, Si Liu, Hairong Latecki, Longin Jan Yan, Shuicheng Xu, Changsheng Lu, Hanqing National Lab. of Pattern Recognition Institute of Automation Chinese Academy of Science China Department of Electrical and Computer Engineering National University of Singapore Singapore China-Singapore Institute of Digital Media Singapore Department of Computer and Information Sciences Temple University Philadelphia PA United States
In this paper, we propose a novel method to select the most informative subset of features, which has little redundancy and very strong discriminating power. Our proposed approach automatically determines the optimal ... 详细信息
来源: 评论
New Moments Based Fuzzy Similarity Measure for Text Detection in Distorted Social Media Images  5th
New Moments Based Fuzzy Similarity Measure for Text Detectio...
收藏 引用
5th Asian Conference on pattern recognition, ACPR 2019
作者: Roy, Soumyadip Shivakumara, Palaiahnakote Pal, Umapada Lu, Tong Blumenstein, Michael Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia National Key Lab for Novel Software Technology Nanjing University Nanjing China Faculty of Engineering and Information Technology University of Technology Sydney Australia
A trend towards capturing or filming images using cellphone and sharing images on social media is a part and parcel of day to day activities of humans. When an image is forwarded several times in social media it may b... 详细信息
来源: 评论
Sketch layer separation in multi-Spectral historical document images  1
Sketch layer separation in multi-Spectral historical documen...
收藏 引用
1st International Symposium on Digital Humanities, DH 2016
作者: Davari, AmirAbbas Häberle, Armin Christlein, Vincent Maier, Andreas Riess, Christian Friedrich-Alexander-University Erlangen-Nuremberg Erlangen Computer Science Department Pattern Recognition Lab. Germany Bibliotheca Hertziana - Max-Planck-Institute for Art History Rome Italy Friedrich-Alexander-University Erlangen-Nuremberg Erlangen Computer Science Department IT Security Infrastructures Germany
High-resolution imaging has delivered new prospects for detecting the material composition and structure of cultural treasures. Despite the various techniques for analysis, a significant diagnostic gap remained in the... 详细信息
来源: 评论
Adaptive Pyramid Context Network for Semantic Segmentation
Adaptive Pyramid Context Network for Semantic Segmentation
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition
作者: Junjun He Zhongying Deng Lei Zhou Yali Wang Yu Qiao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
Recent studies witnessed that context features can significantly improve the performance of deep semantic segmentation networks. Current context based segmentation methods differ with each other in how to construct co... 详细信息
来源: 评论
RankSRGAN: Generative adversarial networks with ranker for image super-resolution
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Wenlong Liu, Yihao Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences
Generative Adversarial Networks (GAN) have demonstrated the potential to recover realistic details for single image super-resolution (SISR). To further improve the visual quality of super-resolved results, PIRM2018-SR... 详细信息
来源: 评论
UNIFORMER: UNIFIED TRANSFORMER FOR EFFICIENT SPATIOTEMPORAL REPRESENTATION LEARNING  10
UNIFORMER: UNIFIED TRANSFORMER FOR EFFICIENT SPATIOTEMPORAL ...
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Li, Kunchang Wang, Yali Gao, Peng Song, Guanglu Liu, Yu Li, Hongsheng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China SenseTime Research The Chinese University of Hong Kong Hong Kong
It is a challenging task to learn rich and multi-scale spatiotemporal semantics from high-dimensional videos, due to large local redundancy and complex global dependency between video frames. The recent advances in th... 详细信息
来源: 评论
Robust text line detection in equipment nameplate images
Robust text line detection in equipment nameplate images
收藏 引用
2019 IEEE International Conference on Robotics and Biomimetics, ROBIO 2019
作者: Lai, Jiangyu Guo, Lanqing Qiao, Yu Chen, Xiaolong Zhang, Zhengfu Liu, Canping Li, Ying Fu, Bin Guangzhou Power Supply Bureau Co. Ltd. Guangzhou China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIATSenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Scene text detection for equipment nameplates in the wild is important for equipment inspection robot since it enables inspection robot to take specific actions for different equipment's. Although text detection i... 详细信息
来源: 评论
Abstract: Learning to avoid poor images: towards task-aware c-arm cone-beam ct trajectories
Abstract: Learning to avoid poor images: towards task-aware ...
收藏 引用
International workshop on Algorithmen - Systeme - Anwendungen, 2020
作者: Zaech, Jan-Nico Gao, Cong Bier, Bastian Taylor, Russell Maier, Andreas Navab, Nassir Unberath, Mathias Laboratory for Computational Sensing and Robotics Johns Hopkins University Baltimore United States Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Computer Vision Laboratory Eidgenössische Technische Hochschule Zürich Zürich Germany
Metal artifacts in computed tomography (CT) arise from a mismatch between physics of image formation and idealized assumptions during tomographic reconstruction. These artifacts are particularly strong around metal im... 详细信息
来源: 评论
Modulating Image Restoration with Continual Levels via Adaptive Feature Modification Layers
Modulating Image Restoration with Continual Levels via Adapt...
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition
作者: Jingwen He Chao Dong Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
In image restoration tasks, like denoising and super-resolution, continual modulation of restoration levels is of great importance for real-world applications, but has failed most of existing deep learning based image... 详细信息
来源: 评论