咨询与建议

限定检索结果

文献类型

  • 186 篇 会议
  • 111 篇 期刊文献

馆藏范围

  • 297 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 213 篇 工学
    • 141 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 59 篇 信息与通信工程
    • 41 篇 光学工程
    • 30 篇 生物工程
    • 25 篇 生物医学工程(可授...
    • 24 篇 控制科学与工程
    • 20 篇 机械工程
    • 10 篇 化学工程与技术
    • 8 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 7 篇 电气工程
    • 6 篇 建筑学
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 材料科学与工程(可...
    • 4 篇 土木工程
    • 4 篇 交通运输工程
  • 136 篇 理学
    • 61 篇 数学
    • 56 篇 物理学
    • 32 篇 生物学
    • 13 篇 统计学(可授理学、...
    • 11 篇 化学
    • 8 篇 系统科学
  • 56 篇 管理学
    • 41 篇 图书情报与档案管...
    • 17 篇 管理科学与工程(可...
  • 10 篇 医学
    • 9 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 艺术学
  • 2 篇 教育学
  • 1 篇 文学

主题

  • 17 篇 feature extracti...
  • 15 篇 image segmentati...
  • 15 篇 convolution
  • 13 篇 semantics
  • 12 篇 image reconstruc...
  • 11 篇 computer vision
  • 10 篇 image edge detec...
  • 9 篇 image color anal...
  • 8 篇 face recognition
  • 7 篇 generative adver...
  • 7 篇 three-dimensiona...
  • 7 篇 face
  • 7 篇 training
  • 6 篇 pixels
  • 6 篇 shape
  • 5 篇 writing
  • 5 篇 pattern recognit...
  • 4 篇 image enhancemen...
  • 4 篇 support vector m...
  • 4 篇 semantic segment...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 31 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 guangzhou power ...
  • 5 篇 arc lab tencent ...

作者

  • 59 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 19 篇 pal umapada
  • 17 篇 umapada pal
  • 17 篇 wang yali
  • 17 篇 lu tong
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 maier andreas
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 290 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Pattern Recognition Lab."
297 条 记 录,以下是101-110 订阅
排序:
A New DCT-FFT Fusion Based Method for Caption and Scene Text Classification in Action Video Images  2nd
A New DCT-FFT Fusion Based Method for Caption and Scene Text...
收藏 引用
2nd International Conference on pattern recognition and Artificial Intelligence, ICPRAI 2020
作者: Nandanwar, Lokesh Shivakumara, Palaiahnakote Manna, Suvojit Pal, Umapada Lu, Tong Blumenstein, Michael Faculty of Computer Science and Information Technology University of Malayasia Kuala Lumpur Malaysia Department of Computer Science and Engineering Jalpaiguri Government Engineering College Jalpaiguri India Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India National Key Lab for Novel Software Technology Nanjing University Nanjing China University of Technology Sydney Ultimo Australia
Achieving better recognition rate for text in video action images is challenging due to multi-type texts with unpredictable backgrounds. We propose a new method for the classification of captions (which is edited text... 详细信息
来源: 评论
UniFormer: Unifying Convolution and Self-attention for Visual recognition
arXiv
收藏 引用
arXiv 2022年
作者: Li, Kunchang Wang, Yali Zhang, Junhao Gao, Peng Song, Guanglu Liu, Yu Li, Hongsheng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China National University of Singapore Singapore Shanghai Artificial Intelligence Laboratory China SenseTime Research China The Chinese University of Hong Kong Hong Kong
It is a challenging task to learn discriminative representation from images and videos, due to large local redundancy and complex global dependency in these visual data. Convolution neural networks (CNNs) and vision t... 详细信息
来源: 评论
Local gradient difference features for classification of 2D-3D natural scene text images  25
Local gradient difference features for classification of 2D-...
收藏 引用
25th International Conference on pattern recognition, ICPR 2020
作者: Nandanwar, Lokesh Shivakumara, Palaiahnakote Raghavendra, Ramachandra Lu, Tong Pal, Umapada Lopresti, Daniel Anuar, Nor Badrul Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Faculty of Information Technology and Electrical Engineering IIK NTNU Norway National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Computer Science and Engineering Lehigh University BethlehemPA United States
Methods developed for normal 2D text detection do not work well for text that is rendered using decorative, 3D effects, etc. This paper proposes a new method for classification of 2D and 3D natural scene text images s... 详细信息
来源: 评论
Multiple domain experts collab.rative learning: Multi-source domain generalization for person re-identification
arXiv
收藏 引用
arXiv 2021年
作者: Yu, Shijie Zhu, Feng Chen, Dapeng Zhao, Rui Chen, Haobin Zhu, Jinguo Tang, Shixiang Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China SenseTime Group Limited Shanghai AI Lab Shanghai China Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai China
Recent years have witnessed significant progress in person re-identification (ReID). However, current ReID approaches still suffer from considerable performance degradation when unseen testing domains exhibit differen... 详细信息
来源: 评论
Context-transformer: Tackling object confusion for few-shot detection
arXiv
收藏 引用
arXiv 2020年
作者: Yang, Ze Wang, Yali Chen, Xianyu Liu, Jianzhuang Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Huawei Noah’s Ark Lab. SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Few-shot object detection is a challenging but realistic scenario, where only a few annotated training images are availab.e for training detectors. A popular approach to handle this problem is transfer learning, i.e.,... 详细信息
来源: 评论
A new journey from SDRTV to HDRTV
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Xiangyu Zhang, Zhengwen Ren, Jimmy S. Tian, Lynhoo Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shanghai China SenseTime Research Shanghai China Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai China Shanghai AI Laboratory Shanghai China
Nowadays modern displays are capable to render video content with high dynamic range (HDR) and wide color gamut (WCG). However, most availab.e resources are still in standard dynamic range (SDR). Therefore, there is a... 详细信息
来源: 评论
PIPAL: A Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration  16th
PIPAL: A Large-Scale Image Quality Assessment Dataset for Pe...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Jinjin, Gu Haoming, Cai Haoyu, Chen Xiaoxing, Ye Ren, Jimmy S. Chao, Dong The School of Data Science The Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China SenseTime Research Science Park Hong Kong SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
LEDNet: Deep Network for Single Image Haze Removal  2018
LEDNet: Deep Network for Single Image Haze Removal
收藏 引用
Proceedings of the 11th Indian Conference on computer vision, Graphics and Image Processing
作者: Akshay Dudhane Subrahmanyam Murala Abhinav Dhall Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar India Learning Affect and Semantic Image Analysis Group Indian Institute of Technology Ropar India
Haze during the bad weather, degrades the visibility of the scene drastically. Degradation of scene visibility varies with respect to the transmission coefficient/map (Tc) of the scene. Estimation of accurate Tc is ke... 详细信息
来源: 评论
Self-slimmed vision Transformer
arXiv
收藏 引用
arXiv 2021年
作者: Zong, Zhuofan Li, Kunchang Song, Guanglu Wang, Yali Qiao, Yu Leng, Biao Liu, Yu School of Computer Science and Engineering Beihang University China SenseTime Research China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China Shanghai AI Laboratory China
vision transformers (ViTs) have become the popular structures and outperformed convolutional neural networks (CNNs) on various vision tasks. However, such powerful transformers bring a huge computation burden, because... 详细信息
来源: 评论
Local Gradient Difference Features for Classification of 2D-3D Natural Scene Text Images
Local Gradient Difference Features for Classification of 2D-...
收藏 引用
International Conference on pattern recognition
作者: Lokesh Nandanwar Palaiahnakote Shivakumara Ramachandra Raghavendra Tong Lu Umapada Pal Daniel Lopresti Nor Badrul Anuar Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Faculty of Information Technology and Electrical Engineering IIK NTNU Norway National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Computer Science & Engineering Lehigh University Bethlehem PA USA
Methods developed for normal 2D text detection do not work well for text that is rendered using decorative, 3D effects, etc. This paper proposes a new method for classification of 2D and 3D natural scene text images s... 详细信息
来源: 评论