咨询与建议

限定检索结果

文献类型

  • 186 篇 会议
  • 114 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 301 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 216 篇 工学
    • 141 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 59 篇 信息与通信工程
    • 41 篇 光学工程
    • 30 篇 生物工程
    • 25 篇 生物医学工程(可授...
    • 24 篇 控制科学与工程
    • 20 篇 机械工程
    • 10 篇 电子科学与技术(可...
    • 10 篇 化学工程与技术
    • 8 篇 电气工程
    • 7 篇 仪器科学与技术
    • 7 篇 建筑学
    • 5 篇 土木工程
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
  • 137 篇 理学
    • 61 篇 数学
    • 57 篇 物理学
    • 32 篇 生物学
    • 13 篇 统计学(可授理学、...
    • 11 篇 化学
    • 8 篇 系统科学
  • 57 篇 管理学
    • 41 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
  • 10 篇 医学
    • 9 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 艺术学
  • 2 篇 教育学
  • 1 篇 文学

主题

  • 17 篇 feature extracti...
  • 15 篇 image segmentati...
  • 15 篇 convolution
  • 13 篇 semantics
  • 12 篇 image reconstruc...
  • 11 篇 computer vision
  • 10 篇 image edge detec...
  • 9 篇 image color anal...
  • 8 篇 face recognition
  • 7 篇 generative adver...
  • 7 篇 three-dimensiona...
  • 7 篇 face
  • 7 篇 training
  • 6 篇 pixels
  • 6 篇 shape
  • 5 篇 writing
  • 5 篇 pattern recognit...
  • 4 篇 image enhancemen...
  • 4 篇 support vector m...
  • 4 篇 semantic segment...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 31 篇 computer vision ...
  • 27 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 12 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 guangzhou power ...
  • 5 篇 arc lab tencent ...

作者

  • 59 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 19 篇 pal umapada
  • 18 篇 wang yali
  • 17 篇 umapada pal
  • 17 篇 lu tong
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 maier andreas
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 280 篇 英文
  • 19 篇 其他
  • 2 篇 中文
检索条件"机构=Computer Vision and Pattern Recognition Lab."
301 条 记 录,以下是111-120 订阅
排序:
Local Gradient Difference Features for Classification of 2D-3D Natural Scene Text Images
Local Gradient Difference Features for Classification of 2D-...
收藏 引用
International Conference on pattern recognition
作者: Lokesh Nandanwar Palaiahnakote Shivakumara Ramachandra Raghavendra Tong Lu Umapada Pal Daniel Lopresti Nor Badrul Anuar Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Faculty of Information Technology and Electrical Engineering IIK NTNU Norway National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Computer Science & Engineering Lehigh University Bethlehem PA USA
Methods developed for normal 2D text detection do not work well for text that is rendered using decorative, 3D effects, etc. This paper proposes a new method for classification of 2D and 3D natural scene text images s... 详细信息
来源: 评论
Exploring emotion features and fusion strategies for audio-video emotion recognition
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Hengshun Meng, Debin Zhang, Yuanyuan Peng, Xiaojiang Du, Jun Wang, Kai Qiao, Yu University of Science and Technology of China China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
The audio-video based emotion recognition aims to classify a given video into basic emotions. In this paper, we describe our approaches in EmotiW 2019, which mainly explores emotion features and feature fusion strateg... 详细信息
来源: 评论
FD-GAN: Generative adversarial networks with fusion-discriminator for single image dehazing
arXiv
收藏 引用
arXiv 2020年
作者: Dong, Yu Liu, Yihao Zhang, He Chen, Shifeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China Adobe Inc.
Recently, convolutional neural networks (CNNs) have achieved great improvements in single image dehazing and attained much attention in research. Most existing learning-based dehazing methods are not fully end-to-end,... 详细信息
来源: 评论
Partial Differential Equations is All You Need for Generating Neural Architectures - A Theory for Physical Artificial Intelligence Systems
arXiv
收藏 引用
arXiv 2021年
作者: Guo, Ping Huang, Kaizhu Xu, Zenglin Image Processing & Pattern Recognition Lab. Beijing Normal University Beijing100875 China Data Science Research Center Duke Kunshan University Jiangsu Kunshan215316 China School of Computer Science and Technology Harbin Institute of Technology at ShenZhen Peng Cheng National Lab Guangdong Shenzhen510855 China
In this work, we generalize the reaction-diffusion equation in statistical physics, Schrödinger equation in quantum mechanics, and Helmholtz equation in paraxial optics into the neural partial differential equati... 详细信息
来源: 评论
Non-deterministic Behavior of Ranking-Based Metrics When Evaluating Embeddings  2nd
Non-deterministic Behavior of Ranking-Based Metrics When Eva...
收藏 引用
2nd International Workshop on Reproducible Research in pattern recognition, RRPR 2018
作者: Nicolaou, Anguelos Dey, Sounak Christlein, Vincent Maier, Andreas Karatzas, Dimosthenis Computer Vision Center Edificio O Campus UAB Bellaterra08193 Spain Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany
Embedding data into vector spaces is a very popular strategy of pattern recognition methods. When distances between embeddings are quantized, performance metrics become ambiguous. In this paper, we present an analysis... 详细信息
来源: 评论
A Survey of the Self Supervised Learning Mechanisms for vision Transformers
arXiv
收藏 引用
arXiv 2024年
作者: Khan, Asifullah Sohail, Anabia Fiaz, Mustansar Hassan, Mehdi Afridi, Tariq Habib Marwat, Sibghat Ullah Munir, Farzeen Ali, Safdar Naseem, Hannan Zaheer, Muhammad Zaigham Ali, Kamran Sultana, Tangina Tanoli, Ziaurrehman Akhter, Naeem Pattern Recognition Lab DCIS PIEAS Nilore Islamabad45650 Pakistan PIEAS Nilore Islamabad45650 Pakistan Deep Learning Lab Center for Mathematical Sciences PIEAS Nilore Islamabad45650 Pakistan Center of Secure Cyber-Physical Security Systems Khalifa University Abu Dhabi United Arab Emirates IBM Research United States Department of Computer Science Air University Islamabad Pakistan Department of Computer Science and Engineering Kyung Hee University Global Campus 1732 Gyeonggi-do Yongin17104 Korea Republic of Department of Electrical Engineering and Automation Aalto University Finland Finnish Center of Artificial Center Finland Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman Malaysia Computer Vision Department Mohamed Bin Zayed University of Artificial Intelligence United Arab Emirates Karachi Pakistan Department of Electronics and Communication Engineering Hajee Mohammad Danesh Science and Technology University Bangladesh HiLIFE University of Helsinki Finland
vision Transformers (ViTs) have recently demonstrated remarkable performance in computer vision tasks. However, their parameter-intensive nature and reliance on large amounts of data for effective performance have shi... 详细信息
来源: 评论
Exploring Multi-Scale Feature Propagation and Communication for Image Super Resolution
arXiv
收藏 引用
arXiv 2020年
作者: Feng, Ruicheng Guan, Weipeng Qiao, Yu Dong, Chao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Acedamy of Sciences China Chinese University of Hong Kong Hong Kong
Multi-scale techniques have achieved great success in a wide range of computer vision tasks. However, while this technique is incorporated in existing works, there still lacks a comprehensive investigation on variants... 详细信息
来源: 评论
A New U-Net Based License Plate Enhancement Model in Night and Day Images  5th
A New U-Net Based License Plate Enhancement Model in Night a...
收藏 引用
5th Asian Conference on pattern recognition, ACPR 2019
作者: Chowdhury, Pinaki Nath Shivakumara, Palaiahnakote Raghavendra, Ramachandra Pal, Umapada Lu, Tong Blumenstein, Michael Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata Kolkata India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Faculty of Information Technology and Electrical Engineering IIK NTNU Gjøvik Norway National Key Lab for Novel Software Technology Nanjing University Nanjing China Faculty of Engineering and Information Technology University of Technology Sydney Ultimo Australia
A new trend of smart city development opens up many challenges. One such issue is that automatic vehicle driving and detection for toll fee payment in night or limited light environments. This paper presents a new wor... 详细信息
来源: 评论
Structure Function Based Transform Features for Behavior-Oriented Social Media Image Classification  5th
Structure Function Based Transform Features for Behavior-Ori...
收藏 引用
5th Asian Conference on pattern recognition, ACPR 2019
作者: Krishnani, Divya Shivakumara, Palaiahnakote Lu, Tong Pal, Umapada Ramachandra, Raghavendra International Institute of Information Technology Naya Raipur Naya RaipurChhattisgarh India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Faculty of Information Technology and Electrical Engineering Norwegian University of Science and Technology Trondheim Norway
Social media has become an essential part of people to reflect their day to day activities including emotions, feelings, threatening and so on. This paper presents a new method for the automatic classification of beha... 详细信息
来源: 评论
AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks
arXiv
收藏 引用
arXiv 2021年
作者: Roy, Swalpa Kumar Paoletti, Mercedes E. Haut, Juan M. Dubey, Shiv Ram Kar, Purbayan Plaza, Antonio Chaudhuri, Bidyut B. The Computer Science and Engineering Alipurduar Government Engineering and Management College 736206 India The Hyperspectral Computing Laboratory Department of Technology of Computers and Communications University of Extremadura Cáceres10003 Spain The Computer Vision and Biometrics Lab Indian Institute of Information Technology Prayagraj Uttar Pradesh Allahabad211015 India The Media Analysis Group Sony Research India Private Limited Karnataka Bangalore560103 India The Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India
Convolutional neural networks (CNNs) are trained using stochastic gradient descent (SGD)-based optimizers. Recently, the adaptive moment estimation (Adam) optimizer has become very popular due to its adaptive momentum... 详细信息
来源: 评论