咨询与建议

限定检索结果

文献类型

  • 186 篇 会议
  • 112 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 299 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 214 篇 工学
    • 141 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 59 篇 信息与通信工程
    • 41 篇 光学工程
    • 30 篇 生物工程
    • 25 篇 生物医学工程(可授...
    • 24 篇 控制科学与工程
    • 20 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 7 篇 电气工程
    • 6 篇 建筑学
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 材料科学与工程(可...
    • 4 篇 土木工程
    • 4 篇 交通运输工程
  • 136 篇 理学
    • 61 篇 数学
    • 56 篇 物理学
    • 32 篇 生物学
    • 13 篇 统计学(可授理学、...
    • 11 篇 化学
    • 8 篇 系统科学
  • 56 篇 管理学
    • 41 篇 图书情报与档案管...
    • 17 篇 管理科学与工程(可...
  • 10 篇 医学
    • 9 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 艺术学
  • 2 篇 教育学
  • 1 篇 文学

主题

  • 17 篇 feature extracti...
  • 15 篇 image segmentati...
  • 15 篇 convolution
  • 13 篇 semantics
  • 12 篇 image reconstruc...
  • 11 篇 computer vision
  • 10 篇 image edge detec...
  • 9 篇 image color anal...
  • 8 篇 face recognition
  • 7 篇 generative adver...
  • 7 篇 three-dimensiona...
  • 7 篇 face
  • 7 篇 training
  • 6 篇 pixels
  • 6 篇 shape
  • 5 篇 writing
  • 5 篇 pattern recognit...
  • 4 篇 image enhancemen...
  • 4 篇 support vector m...
  • 4 篇 semantic segment...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 31 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 guangzhou power ...
  • 5 篇 arc lab tencent ...

作者

  • 59 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 19 篇 pal umapada
  • 17 篇 umapada pal
  • 17 篇 wang yali
  • 17 篇 lu tong
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 maier andreas
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 292 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Pattern Recognition Lab."
299 条 记 录,以下是151-160 订阅
排序:
Exploring emotion features and fusion strategies for audio-video emotion recognition
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Hengshun Meng, Debin Zhang, Yuanyuan Peng, Xiaojiang Du, Jun Wang, Kai Qiao, Yu University of Science and Technology of China China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
The audio-video based emotion recognition aims to classify a given video into basic emotions. In this paper, we describe our approaches in EmotiW 2019, which mainly explores emotion features and feature fusion strateg... 详细信息
来源: 评论
Ui-net: Interactive artificial neural networks for iterative image segmentation based on a user model
arXiv
收藏 引用
arXiv 2017年
作者: Amrehn, Mario Gaube, Sven Unberath, Mathias Schebesch, Frank Horz, Tim Strumia, Maddalena Steidl, Stefan Kowarschik, Markus Maier, Andreas Pattern Recognition Lab. Computer Science Department Friedrich-Alexander University Erlangen-Nuremberg Germany Erlangen Germany Siemens Healthcare GmbH Forchheim Germany
For complex segmentation tasks, fully automatic systems are inherently limited in their achievable accuracy for extracting relevant objects. Especially in cases where only few data sets need to be processed for a high... 详细信息
来源: 评论
CRNN based jersey-bib number/text recognition in sports and marathon images  15
CRNN based jersey-bib number/text recognition in sports and ...
收藏 引用
15th IAPR International Conference on Document Analysis and recognition, ICDAR 2019
作者: Nag, Sauradip Ramachandra, Raghavendra Shivakumara, Palaiahnakote Pal, Umapada Lu, Tong Kankanhalli, Mohan Department of Computer Science & Engineering Kalyani Government Engineering College Kalyani India Faculty of Information Technology and Electrical Engineering Norwegian University of Science and Technology Norway Faculty of Computer System and Information Technology University of Malaya Malaysia Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India National Key Lab for Novel Software Technology Nanjing University China Department of Computer Science School of Computing National University of Singapore Singapore Singapore
The primary challenge in tracing the participants in sports and marathon video or images is to detect and localize the jersey/Bib number that may present in different regions of their outfit captured in cluttered envi... 详细信息
来源: 评论
LTD: Local Ternary Descriptor for Image Matching
LTD: Local Ternary Descriptor for Image Matching
收藏 引用
IEEE International Conference on Information and Automation
作者: Yongqiang Gao Yu Qiao Zhifeng Li Chunjing Xu Shenzhen Key Lab. of Comput. Vision &amp Pattern Recognition Shenzhen Inst. of Adv. Technol. Chinese Univ. of Hong Kong Shenzhen China|c|
Binary descriptors are receiving extensive research interests due to their storage and computation efficiency. A good binary descriptor should deliver sufficient information as well as be robust to image deformation a... 详细信息
来源: 评论
ICDAR 2019 CROHME + TFD: Competition on recognition of Handwritten Mathematical Expressions and Typeset Formula Detection
ICDAR 2019 CROHME + TFD: Competition on Recognition of Handw...
收藏 引用
International Conference on Document Analysis and recognition
作者: Mahshad Mahdavi Richard Zanibbi Harold Mouchere Christian Viard-Gaudin Utpal Garain Document and Pattern Recognition Lab Rochester Institute of Technology Rochester NY USA University of Nantes Nantes France LS2N - UMR CNRS 6004 University of Nantes Nantes France Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India
We summarize the tasks, protocol, and outcome for the 6th Competition on recognition of Handwritten Mathematical Expressions (CROHME), which includes a new formula detection in document images task (+ TFD). For CROHME... 详细信息
来源: 评论
Suppressing Model Overfitting for Image Super-Resolution Networks
Suppressing Model Overfitting for Image Super-Resolution Net...
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition Workshops
作者: Ruicheng Feng Jinjin Gu Yu Qiao Chao Dong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences The School of Science and Engineering The Chinese University of Hong Kong
Large deep networks have demonstrated competitive performance in single image super-resolution (SISR), with a huge volume of data involved. However, in real-world scenarios, due to the limited accessible training pair... 详细信息
来源: 评论
Exploring Multi-Scale Feature Propagation and Communication for Image Super Resolution
arXiv
收藏 引用
arXiv 2020年
作者: Feng, Ruicheng Guan, Weipeng Qiao, Yu Dong, Chao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Acedamy of Sciences China Chinese University of Hong Kong Hong Kong
Multi-scale techniques have achieved great success in a wide range of computer vision tasks. However, while this technique is incorporated in existing works, there still lacks a comprehensive investigation on variants... 详细信息
来源: 评论
VFHQ: A High-Quality Dataset and Benchmark for Video Face Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Xie, Liangbin Wang, Xintao Zhang, Honglun Dong, Chao Shan, Ying Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China ARC Lab Tencent PCG China
Most of the existing video face super-resolution (VFSR) methods are trained and evaluated on VoxCeleb1, which is designed specifically for speaker identification and the frames in this dataset are of low quality. As a... 详细信息
来源: 评论
On integration of vision modules
On integration of vision modules
收藏 引用
IEEE computer Society Conference on computer vision and pattern recognition Workshops (CVPRW)
作者: Pankanti Jain Tuceryan Pattern Recognition and Image Proc. Lab. Michigan State University East Lansing MI USA European Computer-Industry Research Centre Munchen Germany
Individual cues from visual modules are fallible and often ambiguous. As a result, only integrated vision systems can be expected to give a reliable performance in practice. The design of such systems is challenging s... 详细信息
来源: 评论
A New U-Net Based License Plate Enhancement Model in Night and Day Images  5th
A New U-Net Based License Plate Enhancement Model in Night a...
收藏 引用
5th Asian Conference on pattern recognition, ACPR 2019
作者: Chowdhury, Pinaki Nath Shivakumara, Palaiahnakote Raghavendra, Ramachandra Pal, Umapada Lu, Tong Blumenstein, Michael Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata Kolkata India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Faculty of Information Technology and Electrical Engineering IIK NTNU Gjøvik Norway National Key Lab for Novel Software Technology Nanjing University Nanjing China Faculty of Engineering and Information Technology University of Technology Sydney Ultimo Australia
A new trend of smart city development opens up many challenges. One such issue is that automatic vehicle driving and detection for toll fee payment in night or limited light environments. This paper presents a new wor... 详细信息
来源: 评论