咨询与建议

限定检索结果

文献类型

  • 186 篇 会议
  • 112 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 299 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 214 篇 工学
    • 141 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 59 篇 信息与通信工程
    • 41 篇 光学工程
    • 30 篇 生物工程
    • 25 篇 生物医学工程(可授...
    • 24 篇 控制科学与工程
    • 20 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 7 篇 电气工程
    • 6 篇 建筑学
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 材料科学与工程(可...
    • 4 篇 土木工程
    • 4 篇 交通运输工程
  • 136 篇 理学
    • 61 篇 数学
    • 56 篇 物理学
    • 32 篇 生物学
    • 13 篇 统计学(可授理学、...
    • 11 篇 化学
    • 8 篇 系统科学
  • 56 篇 管理学
    • 41 篇 图书情报与档案管...
    • 17 篇 管理科学与工程(可...
  • 10 篇 医学
    • 9 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 艺术学
  • 2 篇 教育学
  • 1 篇 文学

主题

  • 17 篇 feature extracti...
  • 15 篇 image segmentati...
  • 15 篇 convolution
  • 13 篇 semantics
  • 12 篇 image reconstruc...
  • 11 篇 computer vision
  • 10 篇 image edge detec...
  • 9 篇 image color anal...
  • 8 篇 face recognition
  • 7 篇 generative adver...
  • 7 篇 three-dimensiona...
  • 7 篇 face
  • 7 篇 training
  • 6 篇 pixels
  • 6 篇 shape
  • 5 篇 writing
  • 5 篇 pattern recognit...
  • 4 篇 image enhancemen...
  • 4 篇 support vector m...
  • 4 篇 semantic segment...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 31 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 guangzhou power ...
  • 5 篇 arc lab tencent ...

作者

  • 59 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 19 篇 pal umapada
  • 17 篇 umapada pal
  • 17 篇 wang yali
  • 17 篇 lu tong
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 maier andreas
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 292 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Pattern Recognition Lab."
299 条 记 录,以下是191-200 订阅
排序:
Visual compositional learning for Human-Object interaction detection
arXiv
收藏 引用
arXiv 2020年
作者: Hou, Zhi Peng, Xiaojiang Qiao, Yu Tao, Dacheng UBTECH Sydney AI Centre School of Computer Science Faculty of Engineering University of Sydney DarlingtonNSW2008 Australia Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
Human-Object interaction (HOI) detection aims to localize and infer relationships between human and objects in an image. It is challenging because an enormous number of possible combinations of objects and verbs types... 详细信息
来源: 评论
Robust partial Fourier reconstruction for diffusion-weighted imaging using a recurrent convolutional neural network
arXiv
收藏 引用
arXiv 2021年
作者: Gadjimuradov, Fasil Benkert, Thomas Nickel, Marcel Dominik Maier, Andreas Pattern Recognition Lab. Department of Computer Science Friedrich-Alexander University Erlangen-Nürnberg Erlangen Germany Magnetic Resonance Applications Predevelopment Siemens Healthcare GmbH Erlangen Germany
Purpose: To develop an algorithm for robust partial Fourier (PF) reconstruction applicable to diffusion-weighted (DW) images with non-smooth phase variations. Methods: Based on an unrolled proximal splitting algorithm... 详细信息
来源: 评论
Non-Uniform Illumination Attack for Fooling Convolutional Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Jain, Akshay Dubey, Shiv Ram Singh, Satish Kumar Santosh, K.C. Chaudhuri, Bidyut Baran The Computer Vision and Biometrics Lab Department of Information Technology Indian Institute of Information Technology Allahabad Uttar Pradesh Prayagraj211015 India The AI Research Lab Department of Computer Science University of South Dakota VermillionSD57069 United States The Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India
Convolutional Neural Networks (CNNs) have made remarkable strides;however, they remain susceptible to vulnerabilities, particularly in the face of minor image perturbations that humans can easily recognize. This weakn... 详细信息
来源: 评论
New texture-spatial features for keyword spotting in video images
New texture-spatial features for keyword spotting in video i...
收藏 引用
Asian Conference on pattern recognition (ACPR)
作者: Palaiahnakote Shivakumara Guozhu Liang Sangheeta Roy Umapada Pal Tong Lu Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India
Keyword spotting in video document images is challenging due to low resolution and complex background of video images. We propose the combination of Texture-Spatial-Features (TSF) for keyword spotting in video images ... 详细信息
来源: 评论
3D reconstruction based on light field information
3D reconstruction based on light field information
收藏 引用
International Conference on Information and Automation (ICIA)
作者: Yan Zhou Huiwen Guo Ruiqing Fu Guoyuan Liang Can Wang Xinyu Wu Shenzhen Key Lab for Computer Vision and Pattern Recognition Chinese Academy of Sciences Shenzhen College of Advanced Technology University of Chinese Academy of Sciences Dept. Mechanical and Automation Engineering The Chinese University of Hong Kong
As an important branch of computational photography, light field photography combines the hardware design of optical system with key algorithm of signal processing quite well. Unlike traditional photography which can ... 详细信息
来源: 评论
Neighbourhood-guided feature reconstruction for occluded person re-identification
arXiv
收藏 引用
arXiv 2021年
作者: Yu, Shijie Chen, Dapeng Zhao, Rui Chen, Haobin Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China SenseTime Group Limited Shanghai AI Lab Shanghai China
Person images captured by surveillance cameras are often occluded by various obstacles, which lead to defective feature representation and harm person re-identification (Re-ID) performance. To tackle this challenge, w... 详细信息
来源: 评论
Inconsistency Distillation For Consistency:Enhancing Multi-View Clustering via Mutual Contrastive Teacher-Student Leaning
Inconsistency Distillation For Consistency:Enhancing Multi-V...
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Dunqiang Liu Shu-Juan Peng Xin Liu Lei Zhu Zhen Cui Taihao Li Dept. of Comput. Sci. & Fujian Key Lab. of Big Data Intelligence and Security Huaqiao University Xiamen China Zhejiang Lab Hangzhou China Xiamen Key Lab. of Computer Vision and Pattern Recognition Huaqiao University Xiamen China Key Lab. of Computer Vision and Machine Learning (Huaqiao University) Fujian Province University Xiamen China School of Information Sci. and Eng. Shandong Normal University Jinan China School of Computer Sci. and Eng. Nanjing University of Science and Technology Nanjing China
Multi-view clustering has attracted more attention recently since many real-world data are comprised of different representations or views. Recent multi-view clustering works mainly exploit the instance consistency to... 详细信息
来源: 评论
Automatic image-to-model framework for patient-specific electromechanical modeling of the heart
Automatic image-to-model framework for patient-specific elec...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Dominik Neumann Tommaso Mansi Sasa Grbic Ingmar Voigt Bogdan Georgescu Elham Kayvanpour Ali Amr Farbod Sedaghat-Hamedani Jan Haas Hugo Katus Benjamin Meder Joachim Hornegger Ali Kamen Dorin Comaniciu Imaging and Computer Vision Siemens Corporate Technology Princeton NJ Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Germany Department of Internal Medicine III University Hospital Heidelberg Germany
A key requirement for recent advances in computational modeling to be clinically applicable is the ability to fit models to patient data. Various personalization techniques have been proposed for isolated sub-componen... 详细信息
来源: 评论
Efficient Image Super-Resolution using Vast-Receptive-Field Attention
arXiv
收藏 引用
arXiv 2022年
作者: Zhou, Lin Cai, Haoming Gu, Jinjin Li, Zheyuan Liu, Yingqi Chen, Xiangyu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China The University of Sydney Australia University of Macau China
The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel att... 详细信息
来源: 评论
Geometry sharing network for 3D point cloud classification and segmentation
arXiv
收藏 引用
arXiv 2019年
作者: Xu, Mingye Zhou, Zhipeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Siat Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
In spite of the recent progresses on classifying 3D point cloud with deep CNNs, large geometric transformations like rotation and translation remain challenging problem and harm the final classification performance. T... 详细信息
来源: 评论