咨询与建议

限定检索结果

文献类型

  • 186 篇 会议
  • 111 篇 期刊文献

馆藏范围

  • 297 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 213 篇 工学
    • 141 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 59 篇 信息与通信工程
    • 41 篇 光学工程
    • 30 篇 生物工程
    • 25 篇 生物医学工程(可授...
    • 24 篇 控制科学与工程
    • 20 篇 机械工程
    • 10 篇 化学工程与技术
    • 8 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 7 篇 电气工程
    • 6 篇 建筑学
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 材料科学与工程(可...
    • 4 篇 土木工程
    • 4 篇 交通运输工程
  • 136 篇 理学
    • 61 篇 数学
    • 56 篇 物理学
    • 32 篇 生物学
    • 13 篇 统计学(可授理学、...
    • 11 篇 化学
    • 8 篇 系统科学
  • 56 篇 管理学
    • 41 篇 图书情报与档案管...
    • 17 篇 管理科学与工程(可...
  • 10 篇 医学
    • 9 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 艺术学
  • 2 篇 教育学
  • 1 篇 文学

主题

  • 17 篇 feature extracti...
  • 15 篇 image segmentati...
  • 15 篇 convolution
  • 13 篇 semantics
  • 12 篇 image reconstruc...
  • 11 篇 computer vision
  • 10 篇 image edge detec...
  • 9 篇 image color anal...
  • 8 篇 face recognition
  • 7 篇 generative adver...
  • 7 篇 three-dimensiona...
  • 7 篇 face
  • 7 篇 training
  • 6 篇 pixels
  • 6 篇 shape
  • 5 篇 writing
  • 5 篇 pattern recognit...
  • 4 篇 image enhancemen...
  • 4 篇 support vector m...
  • 4 篇 semantic segment...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 31 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 guangzhou power ...
  • 5 篇 arc lab tencent ...

作者

  • 59 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 19 篇 pal umapada
  • 17 篇 umapada pal
  • 17 篇 wang yali
  • 17 篇 lu tong
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 maier andreas
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 290 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Pattern Recognition Lab."
297 条 记 录,以下是21-30 订阅
排序:
Generate Like Experts: Multi-Stage Font Generation by Incorporating Font Transfer Process into Diffusion Models
Generate Like Experts: Multi-Stage Font Generation by Incorp...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Bin Fu Fanghua Yu Anran Liu Zixuan Wang Jie Wen Junjun He Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences The University of Hong Kong Harbin Institute of Technology Shenzhen Shanghai Artificial Intelligence Laboratory
Few-shot font generation (FFG) produces stylized font images with a limited number of reference samples, which can significantly reduce lab.r costs in manual font designs. Most existing FFG methods follow the style-co... 详细信息
来源: 评论
CodePhys: Robust Video-based Remote Physiological Measurement through Latent Codebook Querying
arXiv
收藏 引用
arXiv 2025年
作者: Chu, Shuyang Xia, Menghan Yuan, Mengyao Liu, Xin Seppanen, Tapio Zhao, Guoying Shi, Jingang The School of Software Engineering Xi’an Jiaotong University Xi’an China The Tencent AI Lab Shenzhen China The Computer Vision and Pattern Recognition Laboratory Lappeenranta-Lahti University of Technology LUT Lappeenranta53850 Finland The Center for Machine Vision and Signal Analysis University of Oulu Finland
Remote photoplethysmography (rPPG) aims to measure non-contact physiological signals from facial videos, which has shown great potential in many applications. Most existing methods directly extract video-based rPPG fe... 详细信息
来源: 评论
KV Inversion: KV Embeddings Learning for Text-Conditioned Real Image Action Editing
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Jiancheng Liu, Yifan Qin, Jin Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China
Text-conditioned image editing is a recently emerged and highly practical task, and its potential is immeasurable. However, most of the concurrent methods are unable to perform action editing, i.e. they can not produc... 详细信息
来源: 评论
Non-Uniform Illumination Attack for Fooling Convolutional Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Jain, Akshay Dubey, Shiv Ram Singh, Satish Kumar Santosh, K.C. Chaudhuri, Bidyut Baran The Computer Vision and Biometrics Lab Department of Information Technology Indian Institute of Information Technology Allahabad Uttar Pradesh Prayagraj211015 India The AI Research Lab Department of Computer Science University of South Dakota VermillionSD57069 United States The Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India
Convolutional Neural Networks (CNNs) have made remarkable strides;however, they remain susceptible to vulnerabilities, particularly in the face of minor image perturbations that humans can easily recognize. This weakn... 详细信息
来源: 评论
Bootstrap Diffusion Model Curve Estimation for High Resolution Low-Light Image Enhancement
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Jiancheng Liu, Yifan Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China
Learning-based methods have attracted a lot of research attention and led to significant improvements in low-light image enhancement. However, most of them still suffer from two main problems: expensive computational ... 详细信息
来源: 评论
UNIFORMER: UNIFIED TRANSFORMER FOR EFFICIENT SPATIOTEMPORAL REPRESENTATION LEARNING  10
UNIFORMER: UNIFIED TRANSFORMER FOR EFFICIENT SPATIOTEMPORAL ...
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Li, Kunchang Wang, Yali Gao, Peng Song, Guanglu Liu, Yu Li, Hongsheng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China SenseTime Research The Chinese University of Hong Kong Hong Kong
It is a challenging task to learn rich and multi-scale spatiotemporal semantics from high-dimensional videos, due to large local redundancy and complex global dependency between video frames. The recent advances in th... 详细信息
来源: 评论
DegAE: A New Pretraining Paradigm for Low-Level vision
DegAE: A New Pretraining Paradigm for Low-Level Vision
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Yihao Liu Jingwen He Jinjin Gu Xiangtao Kong Yu Qiao Chao Dong Shanghai Artificial Intelligence Laboratory ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences The University of Sydney
Self-supervised pretraining has achieved remarkable success in high-level vision, but its application in low-level vision remains ambiguous and not well-established. What is the primitive intention of pretraining? Wha...
来源: 评论
Generalist Segmentation Algorithm for Photoreceptors Analysis in Adaptive Optics Imaging
arXiv
收藏 引用
arXiv 2024年
作者: Kulyabin, Mikhail Sindel, Aline Pedersen, Hilde Pedersen, Hilde R. Gilson, Stuart Baraas, Rigmor Maier, Andreas Pattern Recognition Lab Department of Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany National Centre for Optics Vision and Eye Care Faculty of Health and Social Sciences University of South-Eastern Norway Kongsberg Norway
Analyzing the cone photoreceptor pattern in images obtained from the living human retina using quantitative methods can be crucial for the early detection and management of various eye conditions. Confocal adaptive op... 详细信息
来源: 评论
Automated Segmentation and Analysis of Cone Photoreceptors in Multimodal Adaptive Optics Imaging
arXiv
收藏 引用
arXiv 2024年
作者: Shrestha, Prajol Kulyabin, Mikhail Sindel, Aline Pedersen, Hilde R. Gilson, Stuart Baraas, Rigmor Maier, Andreas Pattern Recognition Lab Department of Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany National Centre for Optics Vision and Eye Care Faculty of Health and Social Sciences University of South-Eastern Norway Kongsberg Norway
Accurate detection and segmentation of cone cells in the retina are essential for diagnosing and managing retinal diseases. In this study, we used advanced imaging techniques, including confocal and non-confocal split... 详细信息
来源: 评论
Anomaly Handwritten Text Detection for Automatic Descriptive Answer Evaluation  11
Anomaly Handwritten Text Detection for Automatic Descriptive...
收藏 引用
11th International Conference on Computing and pattern recognition, ICCPR 2022
作者: Chatterjee, Nilanjana Shivakumara, Palaiahnaakote Pal, Umapada Lu, Tong Lu, Yue Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia National Key Lab for Novel Software Technology Nanjing University Nanjing China Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University Shanghai China
Although there are advanced technologies for character recognition, automatic descriptive answer evaluation is an open challenge for the document image analysis community due to large diversified handwritten text and ... 详细信息
来源: 评论