咨询与建议

限定检索结果

文献类型

  • 186 篇 会议
  • 111 篇 期刊文献

馆藏范围

  • 297 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 213 篇 工学
    • 141 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 59 篇 信息与通信工程
    • 41 篇 光学工程
    • 30 篇 生物工程
    • 25 篇 生物医学工程(可授...
    • 24 篇 控制科学与工程
    • 20 篇 机械工程
    • 10 篇 化学工程与技术
    • 8 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 7 篇 电气工程
    • 6 篇 建筑学
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 材料科学与工程(可...
    • 4 篇 土木工程
    • 4 篇 交通运输工程
  • 136 篇 理学
    • 61 篇 数学
    • 56 篇 物理学
    • 32 篇 生物学
    • 13 篇 统计学(可授理学、...
    • 11 篇 化学
    • 8 篇 系统科学
  • 56 篇 管理学
    • 41 篇 图书情报与档案管...
    • 17 篇 管理科学与工程(可...
  • 10 篇 医学
    • 9 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 艺术学
  • 2 篇 教育学
  • 1 篇 文学

主题

  • 17 篇 feature extracti...
  • 15 篇 image segmentati...
  • 15 篇 convolution
  • 13 篇 semantics
  • 12 篇 image reconstruc...
  • 11 篇 computer vision
  • 10 篇 image edge detec...
  • 9 篇 image color anal...
  • 8 篇 face recognition
  • 7 篇 generative adver...
  • 7 篇 three-dimensiona...
  • 7 篇 face
  • 7 篇 training
  • 6 篇 pixels
  • 6 篇 shape
  • 5 篇 writing
  • 5 篇 pattern recognit...
  • 4 篇 image enhancemen...
  • 4 篇 support vector m...
  • 4 篇 semantic segment...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 31 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 guangzhou power ...
  • 5 篇 arc lab tencent ...

作者

  • 59 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 19 篇 pal umapada
  • 17 篇 umapada pal
  • 17 篇 wang yali
  • 17 篇 lu tong
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 maier andreas
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 290 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Pattern Recognition Lab."
297 条 记 录,以下是31-40 订阅
排序:
MUSES: 3D-Controllab.e Image Generation via Multi-Modal Agent Collab.ration
arXiv
收藏 引用
arXiv 2024年
作者: Ding, Yanbo Zhuang, Shaobin Li, Kunchang Yue, Zhengrong Qiao, Yu Wang, Yali Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Shanghai Artificial Intelligence Laboratory China Shanghai Jiao Tong University China
Despite recent advancements in text-to-image generation, most existing methods struggle to create images with multiple objects and complex spatial relationships in the 3D world. To tackle this limitation, we introduce... 详细信息
来源: 评论
Med-DANet V2: A Flexible Dynamic Architecture for Efficient Medical Volumetric Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Shen, Haoran Zhang, Yifu Wang, Wenxuan Chen, Chen Liu, Jing Song, Shanshan Li, Jiangyun School of Automation and Electrical Engineering University of Science and Technology Beijing China Center for Research in Computer Vision University of Central Florida United States National Lab of Pattern Recognition Institute of Automation Chinese Academy of Sciences China
Recent works have shown that the computational efficiency of 3D medical image (e.g. CT and MRI) segmentation can be impressively improved by dynamic inference based on slice-wise complexity. As a pioneering work, a dy... 详细信息
来源: 评论
OSRT: Omnidirectional Image Super-Resolution with Distortion-aware Transformer
OSRT: Omnidirectional Image Super-Resolution with Distortion...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Fanghua Yu Xintao Wang Mingdeng Cao Gen Li Ying Shan Chao Dong ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences ARC Tencent PCG The University of Tokyo Platform Technologies Tencent Online Video Shanghai Artificial Intelligence Laboratory
Omnidirectional images (ODIs) have obtained lots of research interest for immersive experiences. Although ODIs require extremely high resolution to capture details of the entire scene, the resolutions of most ODIs are...
来源: 评论
ES6D: A Computation Efficient and Symmetry-Aware 6D Pose Regression Framework
arXiv
收藏 引用
arXiv 2022年
作者: Mo, Ningkai Gan, Wanshui Yokoya, Naoto Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China The University of Tokyo Japan RIKEN Japan
In this paper, a computation efficient regression framework is presented for estimating the 6D pose of rigid objects from a single RGB-D image, which is applicable to handling symmetric objects. This framework is desi... 详细信息
来源: 评论
Intelligent Energy Consumption For Smart Homes Using Fused Machine-Learning Technique
收藏 引用
computers, Materials & Continua 2023年 第1期74卷 2261-2278页
作者: Hanadi AlZaabi Khaled Shaalan Taher M.Ghazal Muhammad A.Khan Sagheer Abbas Beenu Mago Mohsen A.A.Tomh Munir Ahmad Faculty of Engineering and IT The British University in DubaiUnited Arab Emirates Center for Cyber Security Faculty of Information Science and TechnologyUniversity Kebangsaan Malaysia(UKM)Bangi43600SelangorMalaysia School of Information Technology Skyline University CollegeUniversity City SharjahSharjah1797United Arab Emirates Riphah School of Computing&Innovation Faculty of ComputingRiphah International University Lahore CampusLahore54000Pakistan Pattern Recognition and Machine Learning Lab. Department of SoftwareGachon UniversitySeongnamGyeonggido13120Korea Faculty of Computer Science NCBA&ELahore54660Pakistan
Energy is essential to practically all exercises and is imperative for the development of personal ***,valuable energy has been in great demand for many years,especially for using smart homes and structures,as individ... 详细信息
来源: 评论
Activating More Pixels in Image Super-Resolution Transformer
Activating More Pixels in Image Super-Resolution Transformer
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Xiangyu Chen Xintao Wang Jiantao Zhou Yu Qiao Chao Dong State Key Laboratory of Internet of Things for Smart City University of Macau Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shanghai Artificial Intelligence Laboratory ARC Lab Tencent PCG
Transformer-based methods have shown impressive performance in low-level vision tasks, such as image super-resolution. However, we find that these networks can only utilize a limited spatial range of input information...
来源: 评论
ARNET: ACTIVE-REFERENCE NETWORK FOR FEW-SHOT IMAGE SEMANTIC SEGMENTATION
ARNET: ACTIVE-REFERENCE NETWORK FOR FEW-SHOT IMAGE SEMANTIC ...
收藏 引用
2021 IEEE International Conference on Multimedia and Expo, ICME 2021
作者: Shi, Guangchen Wu, Yirui Palaiahnakote, Shivakumara Pal, Umapada Lu, Tong College of Computer and Information Hohai University China Department of Computer System and Information Technology University of Malaya Malaysia Computer Vision and Pattern Recognition Unit Indian Statistical Institute India National Key Lab for Novel Software Technology Nanjing University China
To make predictions on unseen classes, few-shot segmentation becomes a research focus recently. However, most methods build on pixel-level annotation requiring quantity of manual work. Moreover, inherent information o... 详细信息
来源: 评论
Image compression with recurrent neural network and generalized divisive normalization
arXiv
收藏 引用
arXiv 2021年
作者: Islam, Khawar Dang, L. Minh Lee, Sujin Moon, Hyeonjoon Computer Vision and Pattern Recognition Lab. Sejong University Korea Republic of Department of Artificial Intelligence Sejong University Korea Republic of
Image compression is a method to remove spatial redundancy between adjacent pixels and reconstruct a high-quality image. In the past few years, deep learning has gained huge attention from the research community and p... 详细信息
来源: 评论
Isoform Function Prediction Based on Heterogeneous Graph Attention Networks
Isoform Function Prediction Based on Heterogeneous Graph Att...
收藏 引用
2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
作者: Guo, Kuo Li, Yifan Chen, Hao Shen, Hong-Bin Yang, Yang Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Department of Computer Science and Engineering Shanghai200240 China Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Institute of Image Processing and Pattern Recognition Shanghai200240 China Carnegie Mellon University School of Computer Science Computational Biology Department PittsburghPA15213 United States
Isoforms refer to different mRNA molecules transcribed from the same gene, which can be translated into proteins with varying structures and functions. Predicting the functions of isoforms is an essential topic in bio... 详细信息
来源: 评论
EFFICIENT ONLINE lab.L CONSISTENT HASHING FOR LARGE-SCALE CROSS-MODAL RETRIEVAL
EFFICIENT ONLINE LABEL CONSISTENT HASHING FOR LARGE-SCALE CR...
收藏 引用
2021 IEEE International Conference on Multimedia and Expo, ICME 2021
作者: Yi, Jinhan Liu, Xin Cheung, Yiu-Ming Xu, Xing Fan, Wentao He, Yi Department of Computer Science and Technology Huaqiao University Xiamen361021 China Xiamen Key Lab. of Computer Vision and Pattern Recognition Fujian Key Lab. of Big Data Intelligence and Security China Department of Computer Science Hong Kong Baptist University Kowloon Hong Kong School of Computer Science and Engineering University of Electronic Science and Technology of China China Provincial Key Laboratory for Computer Information Processing Technology Soochow University China
Existing cross-modal hashing still faces three challenges: (1) Most batch-based methods are unsuitable for processing large-scale and streaming data. (2) Current online methods often suffer from insufficient semantic ... 详细信息
来源: 评论