咨询与建议

限定检索结果

文献类型

  • 186 篇 会议
  • 112 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 299 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 214 篇 工学
    • 141 篇 计算机科学与技术...
    • 132 篇 软件工程
    • 59 篇 信息与通信工程
    • 41 篇 光学工程
    • 30 篇 生物工程
    • 25 篇 生物医学工程(可授...
    • 24 篇 控制科学与工程
    • 20 篇 机械工程
    • 10 篇 化学工程与技术
    • 9 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 7 篇 电气工程
    • 6 篇 建筑学
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 材料科学与工程(可...
    • 4 篇 土木工程
    • 4 篇 交通运输工程
  • 136 篇 理学
    • 61 篇 数学
    • 56 篇 物理学
    • 32 篇 生物学
    • 13 篇 统计学(可授理学、...
    • 11 篇 化学
    • 8 篇 系统科学
  • 56 篇 管理学
    • 41 篇 图书情报与档案管...
    • 17 篇 管理科学与工程(可...
  • 10 篇 医学
    • 9 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 艺术学
  • 2 篇 教育学
  • 1 篇 文学

主题

  • 17 篇 feature extracti...
  • 15 篇 image segmentati...
  • 15 篇 convolution
  • 13 篇 semantics
  • 12 篇 image reconstruc...
  • 11 篇 computer vision
  • 10 篇 image edge detec...
  • 9 篇 image color anal...
  • 8 篇 face recognition
  • 7 篇 generative adver...
  • 7 篇 three-dimensiona...
  • 7 篇 face
  • 7 篇 training
  • 6 篇 pixels
  • 6 篇 shape
  • 5 篇 writing
  • 5 篇 pattern recognit...
  • 4 篇 image enhancemen...
  • 4 篇 support vector m...
  • 4 篇 semantic segment...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 31 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 guangzhou power ...
  • 5 篇 arc lab tencent ...

作者

  • 59 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 19 篇 pal umapada
  • 17 篇 umapada pal
  • 17 篇 wang yali
  • 17 篇 lu tong
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 maier andreas
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng

语言

  • 292 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Pattern Recognition Lab."
299 条 记 录,以下是71-80 订阅
排序:
Efficient Image Super-Resolution Using Vast-Receptive-Field Attention  17th
Efficient Image Super-Resolution Using Vast-Receptive-Field ...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Zhou, Lin Cai, Haoming Gu, Jinjin Li, Zheyuan Liu, Yingqi Chen, Xiangyu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Shanghai AI Laboratory Shanghai China The University of Sydney Sydney Australia University of Macau Zhuhai China
The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel att... 详细信息
来源: 评论
Modified quantization index modulation watermarking adaptive to contrast masking thresholds
Modified quantization index modulation watermarking adaptive...
收藏 引用
1st International Conference on Communications and Networking in China, ChinaCom '06
作者: Guoxi, Wang Lihong, Ma. Kang, Cai Hanqing, Lu GD Key Lab. of Computer Network Dept.of Electronic Engineering South China Univ. of Tech. Guangzhou 510641 China National Lab. of Pattern Recognition Inst. Automation China Academy of Science Beijing 100080 China Guangdong Telecom.
In this paper, we suggest an adaptive watermarking method to improve both transparence and robustness of quantization index modulation (QIM) scheme. Instead of a fixed quantization step size, we apply a step size adap... 详细信息
来源: 评论
EfficientFCN: Holistically-Guided Decoding for Semantic Segmentation  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Zhang, Jiawei Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Shatin Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Beijing China
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated conv... 详细信息
来源: 评论
GEMI: A high performance and high flexibility memory interface architecture for complex embedded SOC
GEMI: A high performance and high flexibility memory interfa...
收藏 引用
International Conference on computer Science and Software Engineering, CSSE 2008
作者: Hualong, Zhao Hongshi, Sang Tianxu, Zhang Yebin, Fan State Key Lab. for Multi-spectral Information Processing Technologies Institute for Pattern Recognition and Artificial Intelligence Huazhong University of Science and Technology Wuhan China Department of Computer Science Huazhong University of Science and Technology Wuhan China
Two of the most significant factors in the success of today's system-on-chip (SoC) designs are the ability to deliver efficient access to off-chip high speed memory and the ability to be compatible with several di... 详细信息
来源: 评论
Adaptive classification for person re-identification driven by change detection  4
Adaptive classification for person re-identification driven ...
收藏 引用
4th International Conference on pattern recognition Applications and Methods, ICPRAM 2015
作者: Pagano, C. Granger, E. Sabourin, R. Marcialis, G.L. Roli, F. Lab. d'Imagerie de Vision et d'Intelligence Artificielle École de Technologie Supérieure Université du Qué bec Montreal Canada Pattern Recognition and Applications Group Dept. of Electrical and Electronic Engineering University of Cagliari Cagliari Italy
Person re-identification from facial captures remains a challenging problem in video surveillance, in large part due to variations in capture conditions over time. The facial model of a target individual is typically ... 详细信息
来源: 评论
Balancing usability and security in a video CAPTCHA  09
Balancing usability and security in a video CAPTCHA
收藏 引用
5th Symposium On Usable Privacy and Security, SOUPS 2009
作者: Kluever, Kurt Alfred Zanibbi, Richard Google Inc. 76 Ninth Ave. New York NY 10011 United States Document and Pattern Recognition Lab. Department of Computer Science Rochester Institute of Technology Rochester NY 14623 United States
We present a technique for using content-based video lab.ling as a CAPTCHA task. Our CAPTCHAs are generated from YouTube videos, which contain lab.ls (tags) supplied by the person that uploaded the video. They are gra... 详细信息
来源: 评论
A New Method for Detecting Altered Text in Document Images  2nd
A New Method for Detecting Altered Text in Document Images
收藏 引用
2nd International Conference on pattern recognition and Artificial Intelligence, ICPRAI 2020
作者: Nandanwar, Lokesh Shivakumara, Palaiahnakote Pal, Umapada Lu, Tong Lopresti, Daniel Seraogi, Bhagesh Chaudhuri, Bidyut B. Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Science and Engineering Lehigh University BethlehemPA United States
As more and more office documents are captured, stored, and shared in digital format, and as image editing software becomes increasingly more powerful, there is a growing concern about document authenticity. For examp... 详细信息
来源: 评论
UDC-UNet: Under-Display Camera Image Restoration via U-shape Dynamic Network  17th
UDC-UNet: Under-Display Camera Image Restoration via U-shap...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Liu, Xina Hu, Jinfan Chen, Xiangyu Dong, Chao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China University of Macau Zhuhai China Shanghai AI Laboratory Shanghai China
Under-Display Camera (UDC) has been widely exploited to help smartphones realize full-screen displays. However, as the screen could inevitably affect the light propagation process, the images captured by the UDC syste... 详细信息
来源: 评论
Text scanner with text detection technology on image sequences
Text scanner with text detection technology on image sequenc...
收藏 引用
16th International Conference on pattern recognition, ICPR 2002
作者: Jung, Keechul Kim, Kwang In Kurata, Takeshi Kourogi, Masakastu Han, Junghyun Pattern Recognition and Image Processing Lab. Michigan State Univerisity United States Artificial Intelligence Lab. KAIST Korea Republic of National Institute of Advanced Industrial Science and Technology Japan School of Electrical and Computer Engineering Sungkyunkwan University Korea Republic of
We propose a text scanner, which detects wide text strings in a sequence of scene images. For scene text detection, we use a multiple-CAMShift algorithm on a text probability image produced by a multi-layer perceptron... 详细信息
来源: 评论
THE HIDDEN MARKOV MODEL OF CO-ARTICULATION AND ITS APPLICATION TO THE CONTINUOUS SPEECH recognition
收藏 引用
Journal of Electronics(China) 2000年 第3期17卷 242-247页
作者: Lee Tranzai Zheng Fang Wu Wenhu Chen Daowen(Speech lab., Dept. of computer Sciences and Technology, Tsinghua University, Beijing 100084) (National lab. of pattern recognition, Inst. of Automation, Chinese Academy of Sci., Beijing 100080) Speech Lab. Dept. of Computer Sciences and Technology Tsinghua University Beijing National Lab. of Pattern Recognition Inst. of Automation Chinese Academy of Sci. Beijing
The co-articulation is one of the main reasons that makes the speech recognition difficult. However, the traditional Hidden Markov Models(HMM) can not model the co-articulation, because they depend on the first-order ... 详细信息
来源: 评论