咨询与建议

限定检索结果

文献类型

  • 108 篇 期刊文献
  • 98 篇 会议
  • 4 册 图书

馆藏范围

  • 210 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 145 篇 工学
    • 109 篇 计算机科学与技术...
    • 100 篇 软件工程
    • 38 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 生物工程
    • 19 篇 机械工程
    • 16 篇 生物医学工程(可授...
    • 15 篇 控制科学与工程
    • 9 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
  • 94 篇 理学
    • 43 篇 物理学
    • 35 篇 生物学
    • 25 篇 数学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
    • 5 篇 海洋科学
    • 3 篇 系统科学
  • 40 篇 管理学
    • 25 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 7 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 2 篇 经济学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 14 篇 computer vision
  • 12 篇 pattern recognit...
  • 11 篇 convolution
  • 8 篇 face recognition
  • 8 篇 feature extracti...
  • 7 篇 image segmentati...
  • 7 篇 databases
  • 7 篇 training
  • 6 篇 machine vision
  • 6 篇 semantics
  • 5 篇 distillation
  • 5 篇 hidden markov mo...
  • 5 篇 laboratories
  • 5 篇 visualization
  • 5 篇 clustering algor...
  • 4 篇 computer science
  • 4 篇 object detection
  • 4 篇 pattern matching
  • 4 篇 large dataset
  • 4 篇 neural networks

机构

  • 19 篇 shanghai ai labo...
  • 17 篇 shenzhen key lab...
  • 15 篇 university of ch...
  • 13 篇 xiamen key labor...
  • 12 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 9 篇 department of co...
  • 9 篇 shenzhen key lab...
  • 8 篇 national laborat...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 fujian key labor...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 school of electr...
  • 5 篇 school of artifi...
  • 5 篇 shenzhen key lab...
  • 5 篇 school of artifi...
  • 5 篇 college of compu...

作者

  • 23 篇 qiao yu
  • 19 篇 liu xin
  • 13 篇 wang yali
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 10 篇 dong chao
  • 9 篇 chen xiangyu
  • 8 篇 lensu lasse
  • 8 篇 yu qiao
  • 8 篇 wu xiao-jun
  • 8 篇 kittler josef
  • 7 篇 ming dong
  • 7 篇 yu zitong
  • 7 篇 yue huanjing
  • 7 篇 yang jingyu
  • 6 篇 umapada pal
  • 6 篇 he junjun
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 5 篇 kraft kaisa

语言

  • 199 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision and Pattern Recognition Laboratory"
210 条 记 录,以下是141-150 订阅
排序:
DAPLANKTON: BENCHMARK DATASET FOR MULTI-INSTRUMENT PLANKTON recognition VIA FINE-GRAINED DOMAIN ADAPTATION
arXiv
收藏 引用
arXiv 2024年
作者: Batrakhanov, Daniel Eerola, Tuomas Kraft, Kaisa Haraguchi, Lumi Lensu, Lasse Suikkanen, Sanna Camarena-Gómez, María Teresa Seppälä, Jukka Kälviäinen, Heikki Computer Vision and Pattern Recognition Laboratory LUT University Finland Research Infrastructure Finnish Environment Institute Finland Marine and Freshwater Solutions Finnish Environment Institute Finland Centro Oceanografico de Malaga Instituto Español de Oceanografia Spain
Plankton recognition provides novel possibilities to study various environmental aspects and an interesting real-world context to develop domain adaptation (DA) methods. Different imaging instruments cause domain shif... 详细信息
来源: 评论
Activating More Pixels in Image Super-Resolution Transformer
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Xiangyu Wang, Xintao Zhou, Jiantao Qiao, Yu Dong, Chao State Key Laboratory of Internet of Things for Smart City University of Macau China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China Shanghai Artificial Intelligence Laboratory China ARC Lab Tencent PCG China
Transformer-based methods have shown impressive performance in low-level vision tasks, such as image super-resolution. However, we find that these networks can only utilize a limited spatial range of input information... 详细信息
来源: 评论
A New Journey from SDRTV to HDRTV
A New Journey from SDRTV to HDRTV
收藏 引用
International Conference on computer vision (ICCV)
作者: Xiangyu Chen Zhengwen Zhang Jimmy S. Ren Lynhoo Tian Yu Qiao Chao Dong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences SenseTime Research Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai AI Laboratory Shanghai
Nowadays modern displays are capable to render video content with high dynamic range (HDR) and wide color gamut (WCG). However, most available resources are still in standard dynamic range (SDR). Therefore, there is a... 详细信息
来源: 评论
computer vision Approaches for Automated Bee Counting Application
收藏 引用
IFAC-PapersOnLine 2024年 第9期58卷 43-48页
作者: Simon Bilik Ilona Janakova Adam Ligocki Dominik Ficek Karel Horak Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Brno Czech Republic and Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering Lappeenranta-Lahti University of Technology LUT Lappeenranta Finland Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Brno Czech Republic
Many application from the bee colony health state monitoring could be efficiently solved using a computer vision techniques. One of such challenges is an efficient way for counting the number of incoming and outcoming... 详细信息
来源: 评论
An End-to-End Video Text Detector with Online Tracking
An End-to-End Video Text Detector with Online Tracking
收藏 引用
International Conference on Document Analysis and recognition
作者: Hongyuan Yu Chengquan Zhang Xuan Li Junyu Han Errui Ding Liang Wang University of Chinese Academy of Sciences (UCAS) Center for Research on Intelligent Perception and Computing (CRIPAC) National Laboratory of Pattern Recognition (NLPR) Department of Computer Vision Technology(VIS) Baidu Inc. Chinese Academy of Sciences Artificial Intelligence Research (CAS-AIR)
Video text detection is considered as one of the most difficult tasks in document analysis due to the following two challenges: 1) the difficulties caused by video scenes, i.e., motion blur, illumination changes, and ... 详细信息
来源: 评论
FDDH: Fast discriminative discrete hashing for large-scale cross-modal retrieval
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Xin Wang, Xingzhi Cheung, Yiu-Ming Department of Computer Science Huaqiao University Xiamen Key Laboratory of Computer Vision and Pattern Recognition Fujian Key Laboratory of Big Data Intelligence and Security Xiamen361021 China School of Electronics and Information Technology Sun Yat-sen University Guangzhou510006 China Department of Computer Science Hong Kong Baptist University Hong Kong Hong Kong
Cross-modal hashing, favored for its effectiveness and efficiency, has received wide attention to facilitating efficient retrieval across different modalities. Nevertheless, most existing methods do not sufficiently e... 详细信息
来源: 评论
Anomaly Handwritten Text Detection for Automatic Descriptive Answer Evaluation  22
Anomaly Handwritten Text Detection for Automatic Descriptive...
收藏 引用
Proceedings of the 2022 11th International Conference on Computing and pattern recognition
作者: Nilanjana Chatterjee Palaiahnaakote Shivakumara Umapada Pal Tong Lu Yue Lu Computer Vision and Pattern Recognition Unit Indian Statistical Institute India Faculty of Computer Science and Information Technology University of Malaya Malaysia National Key Lab for Novel Software Technology Nanjing University China Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University China
Although there are advanced technologies for character recognition, automatic descriptive answer evaluation is an open challenge for the document image analysis community due to large diversified handwritten text and ...
来源: 评论
diffGrad: An optimization method for convolutional neural networks
arXiv
收藏 引用
arXiv 2019年
作者: Dubey, Shiv Ram Chakraborty, Soumendu Roy, Swalpa Kumar Mukherjee, Snehasis Singh, Satish Kumar Chaudhuri, Bidyut Baran The Computer Vision Group Indian Institute of Information Technology Sri City Andhra Pradesh Chittoor517646 India The Indian Institute of Information Technology Uttar Pradesh Lucknow India The Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India Techno India University Sector V Salt Lake City Kolkata700091 India The Computer Vision and Biometrics Laboratory Indian Institute of Information Technology Allahabad211015 India
Stochastic Gradient Decent (SGD) is one of the core techniques behind the success of deep neural networks. The gradient provides information on the direction in which a function has the steepest rate of change. The ma... 详细信息
来源: 评论
MUSES: 3D-Controllable Image Generation via Multi-Modal Agent Collaboration
arXiv
收藏 引用
arXiv 2024年
作者: Ding, Yanbo Zhuang, Shaobin Li, Kunchang Yue, Zhengrong Qiao, Yu Wang, Yali Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Shanghai Artificial Intelligence Laboratory China Shanghai Jiao Tong University China
Despite recent advancements in text-to-image generation, most existing methods struggle to create images with multiple objects and complex spatial relationships in the 3D world. To tackle this limitation, we introduce... 详细信息
来源: 评论
Fast Algorithm for Parallel Solving Inversion of Large Scale Small Matrices Based on Gpu
SSRN
收藏 引用
SSRN 2022年
作者: Jin, Xuebin Chen, Yewang Fan, Wentao Zhang, Yong Du, Jixiang The College of Computer Science and Technology Huaqiao University Xiamen China Fujian Key Laboratory of Big Data Intelligence and Security Huaqiao University Xiamen China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University China Provincial Key Laboratory for Computer Information Processing Technology Soochow University Soochow China College of Mechanical Engineering and Automation Huaqiao University Xiamen China
Inverting a matrix is time-consuming, and many works focus on accelerating inverting a single large matrix by GPU. However, the problem of inverting large-scale small matrices has little attention. In this paper, we p... 详细信息
来源: 评论